Paper Reading (schedule):

April 24, 2015, Satoshi Matsushita

INVYSWELL: A HYBRID TRANSACTIONAL MEMORY FOR HASWELL'S RESTRICTED TRANSACTIONAL MEMORY

http://cs.brown.edu/~irina/papers/invyswell.pdf

PACT 2014

Authors:

- 1. Irina Calciu, Brown Univ. http://cs.brown.edu/~irina/
- 2. Justin Gottschlich, Intel labs: http://justingottschlich.com/
- 3. Tatiana Shpeisman, Intel Labs
- 4. Gilles Pokam, Intel Labs
- 5. Maurice Herlihy, Brown Univ.: https://cs.brown.edu/people/faculty/mph.html

Intel Transactional Synchronization Extensions (TSX)

- Hardware Lock Elision (HLE)
- Restricted Transactional Memory (RTM)

Cf. http://en.wikipedia.org/wiki/Transactional Synchronization Extensions

TSX: nest, abort

RTM: Restrictions

- L1 Cache (32KB 8-assoc.) for transactional state store: need one cache line for ether read_set, or write_set
- Aborted by state buff full, interrupt, context switch
- Certain (uncommon) instr.s always cause abort
- No forward progress guaranteed
- No escape actions

Cf. http://www.hpts.ws/papers/2013/HTM.pdf

The paper...

- Resolve limitation of RTM with Software and Hardware hybrid Transactional Memory (TM)
- Due to 'no escape' RTM limitation, trying five TM strategies in sequence.
- No crash, no fault tolerance
 - Higher performance with 5 strategies
 - SpecSW is closer to so called transaction. It consults Contention Manager for commit decision.
 - Simple commit with lock, considering lower impact to concurrently running RTM transaction
- Modification of InvalSTM (software TM by the coauther Gottschlich) to make it HTM hybrid.

Invyswell Design

- Hardware TM: LWHW(small Tx), BMHW
- Software TM: SpecSW, IrrevocSW (always commit), SgISW (Giant lock)

Bloom filter

An example of a Bloom filter, representing the set $\{x, y, z\}$. The colored arrows show the positions in the bit array that each set element is mapped to. The element w is not in the set $\{x, y, z\}$, because it hashes to one bit-array position containing 0. For this figure, m = 18 and k = 3.

- False positive matches are possible, but false negatives are not
 - 1. A strong space advantage: 1% error with ~9.6 bits/element. Additional ~4.8 bits/elem. reduces ~1% false-positive rate
 - 2. O(k) for add items or to check
 - 3. Can not remove an element

Optimization in specSW

- Avoiding abort of inflight HW transaction
 - Reading lock for inflight transaction list aborts hardware transactions (RTM)
 - Using slotted array to eliminate lock in linked list
- Reducing conflict
 - Changing commit order
 - Lock -> commit -> invalidate -> unlock
 - Recording read location in bloom filter if the read is not in write-set

(RAW, True dependency: http://en.wikipedia.org/wiki/Data_dependency)

Other optimizations discussed in section 6.

Fail-Fast mode with priority, read-only transaction

Bug in RTM HW Sandboxing (Sec. 5.2)

- "loop-hole", an unlikely sequence of events in which
 - (1) mutually inconsistent reads cause a spurious memory write,
 - (2) which overwrite an address later used as the target of an indirect jump in that same transaction,
 - (3) thereby causing a jump to a location that happens to contain either an _xend (commit transaction) instruction, or immediate data that looks like one.
 - Executing this instruction without the final commit lock check could prematurely commit an inconsistent set of changes

Solution:

- Check the commit_lock before doing an indirect jump (hand code)
- No indirect jumps: also preventing buffer overflow vulnerability

Conclusion

- Architecture researches sometimes direct to a brute forth or a combination of existing solution.
- They may seem to show presence in evaluation of improvement in benchmarks, instead of proposing a novel algorithm. ... 5% Club ...
- I think it is due to they do not want to change the important component 'CPU, or LSI Chip'.
 - Some have been trying it, ending with 'Pie in the Sky', except ones eventually introduced in real LSI.

References (except ones inline)

- Haswell microarchitecture: http://en.wikipedia.org/wiki/Haswell %28microarchitecture%29
- Intel Haswell TSX page: https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
- Haswell instruction set manual: https://software.intel.com/sites/default/files/m/9/2/3/41604
- An Efficient Software Transactional Memory Using Commit-Time Invalidation, Justin E. Gottschlich, et.al: http://justingottschlich.com/content/cgo10 inval.pdf
- An Evaluation of Intel's Restricted Transactional Memory for CPAs: https://kar.kent.ac.uk/36939/1/9780956540973 020.pdf
- Radix Tree: http://en.wikipedia.org/wiki/Radix_tree
- Apaptive Radix Tree: ARTful http://www3.informatik.tu-muenchen.de/~leis/papers/ART.pdf