
 Accelerating Big Data Processing with Hadoop, Spark, 
and Memcached over High-Performance Interconnects 

Tutorial at HotI ’15 

by 

Dhabaleswar K. (DK) Panda 
The Ohio State University 

E-mail: panda@cse.ohio-state.edu 
http://www.cse.ohio-state.edu/~panda 

Xiaoyi Lu 
The Ohio State University 

E-mail: luxi@cse.ohio-state.edu 
http://www.cse.ohio-state.edu/~luxi 

Slides are available from 
http://www.cse.ohio-state.edu/~panda/hoti15-bigdata-tut.pdf 

http://www.cse.ohio-state.edu/%7Epanda
http://www.cse.ohio-state.edu/%7Epanda


Introduction to Big Data Applications and Analytics 

• Big Data has become the one of the 
most important elements of business 
analytics 

• Provides groundbreaking opportunities 
for enterprise information 
management and decision making  

• The amount of data is exploding; 
companies are capturing and digitizing 
more information than ever 

• The rate of information growth appears 
to be exceeding Moore’s Law 

HotI '15 2 



4V Characteristics of Big Data 

HotI '15 
Courtesy: http://api.ning.com/files/tRHkwQN7s-Xz5cxylXG004GLGJdjoPd6bVfVBwvgu*F5MwDDUCiHHdmBW-
JTEz0cfJjGurJucBMTkIUNdL3jcZT8IPfNWfN9/dv1.jpg 

• Commonly accepted 3V’s of Big Data 
• Volume, Velocity, Variety 
Michael Stonebraker: Big Data Means at Least Three Different Things, http://www.nist.gov/itl/ssd/is/upload/NIST-stonebraker.pdf 

• 4/5V’s of Big Data – 3V + *Veracity, *Value 

3 

http://www.nist.gov/itl/ssd/is/upload/NIST-stonebraker.pdf


• From 2005 to 2020, the digital universe will grow by a factor of 300, from 130 
exabytes to 40,000 exabytes. 

• By 2020, a third of the data in the digital universe (more than 13,000 exabytes) will 
have Big Data Value, but only if it is tagged and analyzed. 
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Big Volume of Data by the End of this Decade  

Courtesy: John Gantz and David Reinsel, "The Digital Universe in 2020: Big Data, Bigger Digital Shadows, 
and Biggest Growth in the Far East”, IDC's Digital Universe Study, sponsored by EMC, December 2012. 
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• Webpages (content, graph) 

• Clicks (ad, page, social) 

• Users (OpenID, FB Connect, etc.) 

• e-mails (Hotmail, Y!Mail, Gmail, etc.) 

• Photos, Movies (Flickr, YouTube, Video, etc.) 

• Cookies / tracking info (see Ghostery) 

• Installed apps (Android market, App Store, etc.) 

• Location (Latitude, Loopt, Foursquared, Google Now, etc.) 

• User generated content (Wikipedia & co, etc.) 

• Ads (display, text, DoubleClick, Yahoo, etc.) 

• Comments (Discuss, Facebook, etc.) 

• Reviews (Yelp, Y!Local, etc.) 

• Third party features (e.g. Experian) 

• Social connections (LinkedIn, Facebook, etc.) 

• Purchase decisions (Netflix, Amazon, etc.) 

• Instant Messages (YIM, Skype, Gtalk, etc.) 

• Search terms (Google, Bing, etc.) 

• Timestamp (everything) 

• News articles (BBC, NYTimes, Y!News, etc.) 

• Blog posts (Tumblr, Wordpress, etc.) 

• Microblogs (Twitter, Jaiku, Meme, etc.) 

• Link sharing (Facebook, Delicious, Buzz, etc.) 

• Network traffic 
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Data Generation in Internet Services and Applications 

Number of Apps in the Apple App Store, Android Market, Blackberry, 
and Windows Phone  (2013) 
• Android Market: <1200K 
• Apple App Store: ~1000K 
Courtesy: http://dazeinfo.com/2014/07/10/apple-inc-aapl-ios-google-inc-
goog-android-growth-mobile-ecosystem-2014/ 
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Velocity of Big Data – How Much Data Is Generated Every 
Minute on the Internet? 

The global Internet population grew 14.3% from 2011 to 2013 and now represents  
2.4 Billion People. 

Courtesy: http://www.domo.com/blog/2014/04/data-never-sleeps-2-0/ 

HotI '15 6 



• Scientific Data Management, Analysis, and Visualization 

• Applications examples  
– Climate modeling 

– Combustion 

– Fusion 

– Astrophysics 

– Bioinformatics 

• Data Intensive Tasks 
– Runs large-scale simulations on supercomputers 

– Dump data on parallel storage systems 

– Collect experimental / observational data 

– Move experimental / observational data to analysis sites 

– Visual analytics – help understand data visually 

HotI '15 

Not Only in Internet Services - Big Data in Scientific 
Domains 
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• Hadoop: http://hadoop.apache.org 
– The most popular framework for Big Data Analytics 

– HDFS, MapReduce, HBase, RPC, Hive, Pig, ZooKeeper, Mahout, etc. 

• Spark: http://spark-project.org 
– Provides primitives for in-memory cluster computing; Jobs can load data into 

memory and query it repeatedly 

• Storm: http://storm-project.net 
– A distributed real-time computation system for real-time analytics, online machine 

learning, continuous computation, etc. 

• S4: http://incubator.apache.org/s4 
– A distributed system for processing continuous unbounded streams of data 

• GraphLab: http://graphlab.org 
– Consists of a core C++ GraphLab API and a collection of high-performance machine 

learning and data mining toolkits built on top of the GraphLab API. 

• Web 2.0: RDBMS + Memcached (http://memcached.org) 
– Memcached: A high-performance, distributed memory object caching systems 

Typical Solutions or Architectures for Big Data Analytics  

8 

http://hadoop.apache.org
http://spark-project.org
http://storm-project.net
http://incubator.apache.org/s4
http://graphlab.org/
http://memcached.org


• Substantial impact on designing and utilizing modern data management and 
processing systems in multiple tiers 

– Front-end data accessing and serving (Online) 
• Memcached + DB (e.g. MySQL), HBase 

– Back-end data analytics (Offline) 
• HDFS, MapReduce, Spark 

HotI '15 

Data Management and Processing on Modern Clusters 

9 



• Focuses on large data and data analysis 

• Hadoop (e.g. HDFS, MapReduce, RPC, HBase) environment 
is gaining a lot of momentum 

• http://wiki.apache.org/hadoop/PoweredBy 
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Who Are Using Hadoop? 
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• Overview 
– MapReduce and RDD Programming Models 
– Apache Hadoop, Spark, and Memcached 
– Modern Interconnects and Protocols 

• Challenges in Accelerating Hadoop, Spark, and Memcached 
• Benchmarks and Applications using Hadoop, Spark, and 

Memcached 
• Acceleration Case Studies and In-Depth Performance Evaluation 
• The High-Performance Big Data (HiBD) Project and Associated 

Releases 
• Ongoing/Future Activities for Accelerating Big Data Applications  
• Conclusion and Q&A 

Presentation Outline 
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The MapReduce Model 

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In Proceedings of 
the 6th Symposium on Operating Systems Design & Implementation (OSDI’04), 2004.  
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WordCount Execution  

• The overall execution process of WordCount in MapReduce  
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A Hadoop MapReduce Example - WordCount 
public class WordCount { 

 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> { 
    private final static IntWritable one = new IntWritable(1); 

    private Text word = new Text(); 

    public void map(LongWritable key, Text value, Context context) throws 
IOException, InterruptedException { 

        String line = value.toString(); 

        StringTokenizer tokenizer = new StringTokenizer(line); 

        while (tokenizer.hasMoreTokens()) { 

            word.set(tokenizer.nextToken()); 

            context.write(word, one); 

        } 

    } 

 }  

 public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> 
{ 

    public void reduce(Text key, Iterator<IntWritable> values, Context context)  
      throws IOException, InterruptedException { 

        int sum = 0; 

        while (values.hasNext()) { 

            sum += values.next().get(); 

        } 

        context.write(key, new IntWritable(sum)); 

    } 

 } 

} 

LOC of the Full 
Example: 63 

Scalable Fault-
Tolerant 

Productive 
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Data Sharing Problems in MapReduce 

iter. 1 iter. 2 .  .  . 

Input 

HDFS 
read 

HDFS 
write 

HDFS 
read 

HDFS 
write 
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Slow due to replication, serialization, and disk IO 

iter. 1 iter. 2 .  .  . 

Input 

10-100× faster than network and disk 

In-Memory? 
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RDD Programming Model in Spark 

• Key idea: Resilient Distributed Datasets (RDDs) 
– Immutable distributed collections of objects that can be cached in 

memory across cluster nodes 

– Created by transforming data in stable storage using data flow 
operators (map, filter, groupBy, …) 

– Manipulated through various parallel operators 

– Automatically rebuilt on failure 
• rebuilt if a partition is lost 

• Interface 
– Clean language-integrated API in Scala (Python & Java) 

– Can be used interactively from Scala console 
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RDD Operations 

Transformations 
(define a new RDD) 

map 
filter 
sample 
union 
groupByKey 
reduceByKey 
sortByKey 
join 
… 

Actions  
(return a result to driver) 

reduce 
collect 
count 
first 
Take 
countByKey 
saveAsTextFile 
saveAsSequenceFile 
… 
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More Information:  
• https://spark.apache.org/docs/latest/programming-guide.html#transformations 
• https://spark.apache.org/docs/latest/programming-guide.html#actions 
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Example: Log Mining 

Load error messages from a log into memory, then interactively 
search for various patterns 

lines = spark.textFile(“hdfs://...”) 

errors = lines.filter(_.startsWith(“ERROR”)) 

messages = errors.map(_.split(‘\t’)(2)) 

cachedMsgs = messages.cache() 

Block 1 

Block 2 

Block 3 

Worker 

Worker 

Worker 

Driver 

cachedMsgs.filter(_.contains(“foo”)).count 

cachedMsgs.filter(_.contains(“bar”)).count 

. . . 

tasks 

results 

Cache 1 

Cache 2 

Cache 3 

Base RDD Transformed RDD 

Action 

Result: full-text search of Wikipedia in <1 sec (vs 20 
sec for on-disk data) 

Result: scaled to 1 TB data in 5-7 sec 
(vs 170 sec for on-disk data) 

HotI '15 

Courtesy: https://spark.apache.org/ 
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Lineage-based Fault Tolerance 

• RDDs maintain lineage information that can be used to 
reconstruct lost partitions 

• Example 

 

 

cachedMsgs = textFile(...).filter(_.contains(“error”)) 
                          .map(_.split(‘\t’)(2)) 
                          .cache() 

HdfsRDD 
path: hdfs://… 

FilteredRDD 
func: contains(...) 

MappedRDD 
func: split(…) 

CachedRDD 
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RDD Example: Word Count in Spark! 

val file = spark.textFile("hdfs://...")  
 
val counts = file.flatMap(line => line.split(" "))  
                 .map(word => (word, 1))  
                 .reduceByKey(_ + _) 
 
counts.saveAsTextFile("hdfs://...") 

Scalable 

High-
Performance 

3 Lines! Productive 

Fault-
Tolerant 
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Benefits of RDD Model 
• Consistency is easy due to immutability 

• Inexpensive fault tolerance (log lineage rather than 
replicating/checkpointing data) 

• Locality-aware scheduling of tasks on partitions 

• Despite being restricted, model seems applicable to a broad variety of 
applications 

• Easy Programming 

• High-Performance 

• Scalable 
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• Logistic Regression Performance 
– Apache Hadoop (127s/iteration) 

– Apache Spark (first iteration : 174s, 
further iterations: 6s) 

Courtesy: https://spark.apache.org/ 
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• Overview 
– MapReduce and RDD Programming Models 
– Apache Hadoop, Spark, and Memcached 
– Modern Interconnects and Protocols 

• Challenges in Accelerating Hadoop, Spark, and Memcached 
• Benchmarks and Applications using Hadoop, Spark, and 

Memcached 
• Acceleration Case Studies and In-Depth Performance Evaluation 
• The High-Performance Big Data (HiBD) Project and Associated 

Releases 
• Ongoing/Future Activities for Accelerating Big Data Applications  
• Conclusion and Q&A 

Presentation Outline 
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• Overview of Apache Hadoop Architecture and its 
Components 
– MapReduce 
– HDFS 
– RPC 
– Spark 
– HBase 

• Overview of Web 2.0 Architecture and Memcached 

Architecture Overview of Hadoop, Spark, and Memcached 

HotI '15 23 



• Open-source implementation of Google MapReduce, GFS, and BigTable 
for Big Data Analytics 
• Hadoop Common Utilities (RPC, etc.), HDFS, MapReduce, YARN 

• http://hadoop.apache.org 

 

 

Overview of Apache Hadoop Architecture 

HotI '15 

Hadoop Distributed File System (HDFS) 

MapReduce 
(Cluster Resource Management & Data Processing) 

Hadoop Common/Core (RPC, ..) 

Hadoop Distributed File System (HDFS) 

YARN 
(Cluster Resource Management & Job Scheduling) 

Hadoop Common/Core (RPC, ..) 

MapReduce 
(Data Processing) 

Other Models 
(Data Processing) 

Hadoop 1.x Hadoop 2.x  
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• Ambari: A web-based tool for provisioning, managing, and monitoring Hadoop clusters. 

• Avro: A data serialization system. 

• Cassandra: A scalable multi-master database with no single points of failure. 

• Chukwa: A data collection system for managing large distributed systems. 

• HBase: A scalable database that supports structured data storage for large tables. 

• Hive: A data warehouse infrastructure that provides data summarization and ad-hoc 
querying. 

• Mahout: A scalable machine learning and data mining library. 

• Pig: A high-level data-flow language and execution framework for parallel computation. 

• Spark: A fast and general compute engine for data. Spark provides a simple and expressive 
programming model that supports a wide range of applications, including ETL, machine 
learning, stream processing, and graph computation. 

• Tez: A generalized data-flow programming framework, which provides a powerful and 
flexible engine to execute an arbitrary DAG of tasks to process data for both batch and 
interactive use-cases. Tez is being adopted to replace Hadoop MapReduce. 

• ZooKeeper: A high-performance coordination service for distributed applications. 

HotI '15 

Projects Under Apache Hadoop 
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Big Data Processing with Hadoop Components 

• Major components included in 
this tutorial:  
– MapReduce (Batch) 
– HBase (Query) 
– HDFS (Storage) 
– RPC (Inter-process communication) 

• Underlying Hadoop Distributed 
File System (HDFS) used by both 
MapReduce and HBase 

• Model scales but high amount of 
communication during 
intermediate phases can be 
further optimized 

HDFS 

MapReduce 

Hadoop Framework 

User Applications 

HBase 

Hadoop Common (RPC) 
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Hadoop Cluster 

HotI '15 

• MapReduce Framework 
– JobTracker: track, manage jobs and detect failure 
– TaskTrackers: host map/reduce tasks computation 

• HDFS 
– NameNode: stores meta information of data blocks 
– DataNodes: store blocks and support operations on blocks 

Typical Hadoop 1.x Cluster 
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Hadoop 1.x MapReduce Job Execution 

• Main Features 
– Replication (e.g. 3) 
– Data locality for Maps 
– HTTP-based Shuffle 
– Speculative execution 
– Independence among 

tasks 
– … 

 
• Goals 

– Fault Tolerance 
– Scalability 

NameNode 
(JobTracker) 

DataNode 
(TaskTracker) 

DataNode 
(TaskTracker) 

DataNode 
(TaskTracker) 

DataNode 
(TaskTracker) 

Client 

Job 

map 

map 

map 

map 

reduce 

reduce 

reduce 

reduce 

Completion 
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MapReduce on Hadoop 1.x 

• The clients submit MapReduce jobs  
to JobTracker 

• The JobTracker assigns Map and Reduce 
tasks to other nodes in the cluster 

• These nodes each run a daemon TaskTracker on 
separate JVM 

• Each TaskTracker initiates the Map or Reduce tasks and 
reports progress back to JobTracker 

Courtesy: http://www.cyanny.com/2013/12/05/hadoop-mapreduce-1-framework 
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MapReduce on Hadoop 2.x -- YARN Architecture 

• Resource Manager: coordinates the 
allocation of compute resources 

• Node Manager: in charge of resource 
containers, monitoring resource usage, 
and reporting to Resource Manager 

• Application Master: in charge of the life 
cycle an application, like a MapReduce 
Job. It negotiates with Resource 
Manager of cluster resources and  keeps 
track of task progress and status 

Courtesy: http://www.cyanny.com/2013/12/05/hadoop-mapreduce-2-yarn/ 30 



Data Movement in Hadoop MapReduce 

Disk Operations 
• Map and Reduce Tasks carry out the total job execution 

– Map tasks read from HDFS, operate on it, and write the intermediate data to local disk 
– Reduce tasks get these data by shuffle from TaskTrackers, operate on it and write to HDFS 

• Communication in shuffle phase uses HTTP over Java Sockets 
HotI '15 

Bulk Data Transfer 
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Hadoop Distributed File System (HDFS) 

• Primary storage of Hadoop; 
highly reliable and fault-tolerant 

• Adopted by many reputed 
organizations 
– eg: Facebook, Yahoo! 

• NameNode: stores the file system 
namespace 

• DataNode: stores data blocks 

• Developed in Java for platform-
independence and portability 

• Uses sockets for communication! 

 

 

(HDFS Architecture) 

RPC 

RPC 

RPC 

RPC 

HotI '15 

Client 

32 



HotI '15 

Network-Level Interaction Between Clients and Data 
Nodes in HDFS  
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Hadoop RPC Usage 

• RPC in HDFS 
• Report the current load and all the information of stored blocks between DNs and NN 
• The HDFS clients use RPC to communicate with NN 

• RPC in MapReduce 
• Exchanges information between JT and TTs, e.g. heartbeat messages, task completion events, 

error reports, etc. 
• Submit a Job for execution and get the current system status 

• RPC in HBase 
• A core communication scheme for HBase Put/Get operations 
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Spark Architecture Overview 

• An in-memory data-processing 
framework  
– Iterative machine learning jobs  
– Interactive data analytics  
– Scala based Implementation 
– Standalone, YARN, Mesos 

• Scalable and communication 
intensive 
– Wide dependencies between 

Resilient Distributed Datasets 
(RDDs) 

– MapReduce-like shuffle 
operations to repartition RDDs  

– Sockets based communication 

HotI '15 

http://spark.apache.org 
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Spark Ecosystem 

Spark 

Spark 
Streaming 

(real-time) 

GraphX 
(graph) 

… 
Spark  
SQL 

MLbase 
(machine 
learning) 

BlinkDB 

• Generalize MapReduce to support new apps in same engine 

• Two Key Observations 
– General task support with DAG  

– Multi-stage and interactive apps require faster data sharing across 
parallel jobs 

Standalone Apache Mesos YARN 
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HBase Overview 

• Apache Hadoop Database 
(http://hbase.apache.org/) 

• Semi-structured database, which 
is highly scalable 

• Integral part of many datacenter 
applications 
– eg: Facebook Social Inbox 

• Developed in Java for platform-
independence and portability 

• Uses sockets for communication! 

 

(HBase Architecture) 
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Network-Level Interaction Between  
HBase Clients, Region Servers and Data Nodes  
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• Three-layer architecture of Web 2.0 
– Web Servers, Memcached Servers, Database Servers 

• Memcached is a core component of Web 2.0 architecture 

Overview of Web 2.0 Architecture and Memcached 

HotI '15 

Internet 
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Memcached Architecture 

• Distributed Caching Layer 
– Allows to aggregate spare memory from multiple nodes 
– General purpose 

• Typically used to cache database queries, results of API calls 
• Scalable model, but typical usage very network intensive 
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• Overview 
– MapReduce and RDD Programming Models 
– Apache Hadoop, Spark, and Memcached 
– Modern Interconnects and Protocols 

• Challenges in Accelerating Hadoop, Spark, and Memcached 
• Benchmarks and Applications using Hadoop, Spark, and 

Memcached 
• Acceleration Case Studies and In-Depth Performance Evaluation 
• The High-Performance Big Data (HiBD) Project and Associated 

Releases 
• Ongoing/Future Activities for Accelerating Big Data Applications  
• Conclusion and Q&A 

Presentation Outline 
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Trends for Commodity Computing Clusters in the Top 500 
List (http://www.top500.org) 

42 HotI '15 

0
10
20
30
40
50
60
70
80
90
100

0
50

100
150
200
250
300
350
400
450
500

Pe
rc

en
ta

ge
 o

f C
lu

st
er

s 
 

N
um

be
r o

f C
lu

st
er

s 

Timeline 

Percentage of Clusters
Number of Clusters

87% 



Overview of High Performance Interconnects 

• High-Performance Computing (HPC) has adopted advanced 
interconnects and protocols  
– InfiniBand 

– 10 Gigabit Ethernet/iWARP 

– RDMA over Converged Enhanced Ethernet (RoCE) 

• Very Good Performance 
– Low latency (few micro seconds) 

– High Bandwidth (100 Gb/s with dual FDR InfiniBand) 

– Low CPU overhead (5-10%) 

• OpenFabrics software stack with IB, iWARP and RoCE 
interfaces are driving HPC systems 

• Many such systems in Top500 list 
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Kernel 
Space 

All interconnects and protocols in OpenFabrics Stack 
Application / 
Middleware 

Verbs 

Ethernet 
Adapter 

Ethernet 
Switch 

Ethernet 
Driver 

TCP/IP 

1/10/40/100 
GigE 

InfiniBand 
Adapter 

InfiniBand 
Switch 

IPoIB 

IPoIB 

Ethernet 
Adapter 

Ethernet 
Switch 

Hardware 
Offload 

TCP/IP 

10/40 GigE-
TOE 

InfiniBand 
Adapter 

InfiniBand 
Switch 

User 
Space 

RSockets 

RSockets 

iWARP 
Adapter 

Ethernet 
Switch 

TCP/IP 

User 
Space 

iWARP 

RoCE 
Adapter 

Ethernet 
Switch 

RDMA 

User 
Space 

RoCE 

InfiniBand 
Switch 

InfiniBand 
Adapter 

RDMA 

User 
Space 

IB Native 

Sockets 

Application / 
Middleware Interface 

Protocol 

Adapter 

Switch 

InfiniBand 
Adapter 

InfiniBand 
Switch 

RDMA 

SDP 

SDP 
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Trends of Networking Technologies in TOP500 Systems   
Percentage share of InfiniBand is steadily increasing  

Interconnect Family – Systems Share 

HotI '15 

Courtesy: 
  http://top500.org 
  
http://www.theplatform.net/2015/07/20/eth
ernet-will-have-to-work-harder-to-win-hpc/ 

http://top500.org


• 259 IB Clusters (51%) in the June 2015 Top500 list   

      (http://www.top500.org) 

• Installations in the Top 50 (24 systems): 

Large-scale InfiniBand Installations 

519,640 cores (Stampede) at TACC (8th) 76,032 cores (Tsubame 2.5) at Japan/GSIC (22nd) 

185,344 cores (Pleiades) at NASA/Ames (11th) 194,616 cores (Cascade) at PNNL (25th) 

72,800 cores Cray CS-Storm in US (13th) 76,032 cores (Makman-2) at Saudi Aramco (28th) 

72,800 cores Cray CS-Storm in US (14th) 110,400 cores (Pangea) in France (29th) 

265,440 cores SGI ICE at Tulip Trading Australia (15th) 37,120 cores (Lomonosov-2) at Russia/MSU (31st) 

124,200 cores (Topaz) SGI ICE at ERDC DSRC in US  (16th) 57,600 cores (SwiftLucy) in US (33rd) 

72,000 cores (HPC2) in Italy (17th) 50,544 cores (Occigen) at France/GENCI-CINES (36th) 

115,668 cores (Thunder) at AFRL/USA (19th) 76,896 cores (Salomon) SGI ICE in Czech Republic (40th) 

147,456 cores (SuperMUC) in  Germany (20th) 73,584 cores (Spirit) at AFRL/USA (42nd) 

86,016 cores (SuperMUC Phase 2) in  Germany (21st) and many more! 
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Open Standard InfiniBand Networking Technology 
• Introduced in Oct 2000 
• High Performance Data Transfer 

– Interprocessor communication and I/O 
– Low latency (<1.0 microsec), High bandwidth (up to 12.5 GigaBytes/sec 

-> 100Gbps), and low CPU utilization (5-10%) 
• Flexibility for LAN and WAN communication 
• Multiple Transport Services 

– Reliable Connection (RC), Unreliable Connection (UC), Reliable 
Datagram (RD), Unreliable Datagram (UD), and Raw Datagram 

– Provides flexibility to develop upper layers 
• Multiple Operations 

– Send/Recv 
– RDMA Read/Write 
– Atomic Operations (very unique) 

• high performance and scalable implementations of distributed locks, 
semaphores, collective communication operations  

• Leading to big changes in designing HPC clusters, file systems, 
cloud computing systems, grid computing systems, ….  
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Communication in the Channel Semantics 
(Send/Receive Model) 

InfiniBand Device 

Memory Memory 

InfiniBand Device 

CQ 
QP 

Send Recv 

Memory 
Segment 

Send WQE contains information about the 
send buffer (multiple non-contiguous 

segments) 

Processor Processor 

CQ 
QP 

Send Recv 

Memory 
Segment 

Receive WQE contains information on the receive 
buffer (multiple non-contiguous segments); 
Incoming messages have to be matched to a 

receive WQE to know where to place 

Hardware ACK 

Memory 
Segment 

Memory 
Segment 

Memory 
Segment 

Processor is involved only to: 
 

1. Post receive WQE 
2. Post send WQE 

3. Pull out completed CQEs from the CQ 
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Communication in the Memory Semantics (RDMA Model) 

InfiniBand Device 

Memory Memory 

InfiniBand Device 

CQ 
QP 

Send Recv 

Memory 
Segment 

Send WQE contains information about the 
send buffer (multiple segments) and the 

receive buffer (single segment) 

Processor Processor 

CQ 
QP 

Send Recv 

Memory 
Segment 

Hardware ACK 

Memory 
Segment 

Memory 
Segment 

Initiator processor is involved only to: 
1. Post send WQE 

2. Pull out completed CQE from the send CQ 
 

No involvement from the target processor 
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Feature Comparison: IB, IWARP/HSE and RoCE 

Features IB iWARP/HSE RoCE 

Hardware Acceleration Yes Yes Yes 

RDMA Yes Yes Yes 

Congestion Control Yes Optional Yes 

Multipathing Yes Yes Yes 

Atomic Operations Yes No Yes 

Multicast Optional No Optional 

Data Placement Ordered Out-of-order Ordered 

Prioritization Optional Optional Yes 

Fixed BW QoS (ETS) No Optional Yes 

Ethernet Compatibility No Yes Yes 

TCP/IP Compatibility 
Yes 

(using IPoIB) 
Yes 

Yes 
(using IPoIB) 
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• Overview 
– MapReduce and RDD Programming Models 
– Apache Hadoop, Spark, and Memcached 
– Modern Interconnects and Protocols 

• Challenges in Accelerating Hadoop, Spark, and Memcached 
• Benchmarks and Applications using Hadoop, Spark, and 
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Wide Adaptation of RDMA Technology 

• Message Passing Interface (MPI) for HPC 

• Parallel File Systems 
– Lustre 

– GPFS 

• Delivering excellent performance (latency, bandwidth and 
CPU Utilization) 

• Delivering excellent scalability 
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• High Performance open-source MPI Library for InfiniBand, 10-40Gig/iWARP, and RDMA over 
Converged Enhanced Ethernet (RoCE) 

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002 

– MVAPICH2-X (MPI + PGAS), Available since 2011 

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014 

– Support for Virtualization (MVAPICH2-Virt), Available since 2015 

– Used by more than  2,450 organizations in 76 countries 

– More than 282,000 downloads from the OSU site directly 

– Empowering many TOP500 clusters (June ‘15 ranking) 
•  8th ranked 519,640-core cluster (Stampede) at  TACC 

• 11th ranked 185,344-core cluster (Pleiades) at NASA 

• 22nd ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others 

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE) 

– http://mvapich.cse.ohio-state.edu 

• Empowering Top500 systems for over a decade 
– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) -> 

– Stampede at TACC (8th in Jun’15, 462,462 cores, 5.168 Plops) 

MVAPICH2 Software 
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Latency & Bandwidth: MPI over IB with MVAPICH2 
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Can High-Performance Interconnects  Benefit Big Data 
Computing?  
• Most of the current Big Data systems use Ethernet 

Infrastructure with Sockets 

• Concerns for performance and scalability 

• Usage of High-Performance Networks is beginning to draw 
interest 
– Oracle, IBM, Google, Intel are working along these directions  

• What are the challenges? 

• Where do the bottlenecks lie? 

• Can these bottlenecks be alleviated with new designs (similar 
to the designs adopted for MPI)? 

• Can HPC Clusters with High-Performance networks be used 
for Big Data applications using Hadoop and Memcached? 

 HotI '15 55 



Designing Communication and I/O Libraries for Big 
Data Systems: Challenges   

HotI '15 

Big Data Middleware 
(HDFS, MapReduce, HBase, Spark and Memcached) 

Networking Technologies 
(InfiniBand, 1/10/40/100 
GigE and Intelligent NICs) 

 
Storage Technologies 

(HDD, SSD, and NVMe-
SSD) 

Programming Models 
(Sockets) 

Applications 

Commodity Computing System 
Architectures 

(Multi- and Many-core 
architectures and accelerators) 

Other Protocols? 

Communication and I/O Library 

Point-to-Point 
Communication 

QoS 

Threaded Models 
and Synchronization 

Fault-Tolerance I/O and File Systems 

Virtualization 

Benchmarks 
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Can Big Data Processing Systems be Designed with High-
Performance Networks and Protocols? 

Current  Design 

Application 

Sockets 

1/10 GigE 
Network 

• Sockets not designed for high-performance 
– Stream semantics often mismatch for upper layers 
– Zero-copy not available for non-blocking sockets 

Our Approach 

Application 

OSU  Design 

10 GigE or InfiniBand 

Verbs Interface 
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• Hadoop Benchmarks 
– TestDFSIO, Enhanced TestDFSIO, RandomWriter, Sort, TeraGen, TeraSort 

– PUMA 

• NoSQL Benchmarks 
– YCSB 

• Spark Benchmarks 
– GroupBy, PageRank, K-means 

• Memcached Benchmark 
– Olio 

• OSU HiBD Micro-Benchmark (OHB) Suite  
– HDFS, MapReduce, RPC, Memcached 

• BigDataBench 

Overview of Benchmarks using Hadoop and Memcached 
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• TestDFSIO 
– HDFS benchmark; measures the I/O performance of HDFS 

– Includes Read and Write tests 

– Input: No. of files (to be read or written to), size of each file 

– Output: Average throughput per map, Average I/O rate per map,  Job execution 
time 

• Enhanced TestDFSIO in Intel HiBench  
– Attempts to report an aggregate performance curve, rather than just a summary 

rate at the end 
• Computes the aggregated throughput by sampling the number of bytes read/written 

at fixed time intervals in each map task 

• In the reduce stage, the samples of each map task are re-sampled at a fixed plot rate 
to compute the aggregated read/write throughput by all  the map tasks 

– Input: No. of files (to be read or written to), size of each file 

– Output: Aggregated throughput, Job execution time 

HotI '15 

Hadoop Benchmarks 
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• RandomWriter, Sort 
– MapReduce benchmark; RandomWriter generates the data for Sort 

– The Sort benchmark uses the MapReduce framework to sort the input directory 
into the output directory. The input/output format is SequenceFile where the 
key/value format is BytesWritable 

 
• TeraGen, TeraSort 

– MapReduce benchmark; TeraGen generates the input data for TeraSort 

– TeraSort is implemented as a MapReduce sort job with a custom partitioner 
(TotalOrderPartitioner) that uses a sorted list of sampled keys that define the 
key range for each reduce 

HotI '15 

Hadoop Benchmarks 
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• PUrdue MApReduce benchmarks suite (a total of 13 benchmarks) 

• Represents a broad range of MapReduce applications exhibiting 
application characteristics with high/low computation and high/low 
shuffle volumes 

• https://sites.google.com/site/farazahmad/pumabenchmarks 
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PUMA 

Benchmark Description 

Adjacency List Generates adjacency and reverse adjacency lists of nodes of a 
graph for use by PageRank-like algorithms 

Self Join Generates association among k+1 fields given the set of k-field 
associations 

Word Count Counts the occurrences of each word in a large collection of 
documents 

Inverted Index Generates word-to-document indexing from a list of documents 

Sequence Count Generates a count of all unique sets of three consecutive words 
per document in the input data 
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• Benchmarking systems including different No-SQL 
databases, like HBase, Cassandra, MongoDB, etc. 

• Consists of six different workloads for cloud systems 
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Yahoo! Cloud Serving Benchmark – YCSB 

Workload Function 

A 50% read -50% write 

B 95% read – 5% write 

C 100% read 

D New records are inserted and read 

E Short ranges of records are queried, instead of individual 

F Read a record, modify it, and write back the changes 

https://github.com/brianfrankcooper/YCSB/wiki 
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• GroupBy 
– A commonly used micro-benchmark that uses the 

groupByKey operation, which groups the values for each key 
in the RDD into a single sequence and results in data shuffle 

• PageRank 
– Counts the number and quality of links to a page to 

determine a rough estimate of how important the website is. 
A typical search engine benchmark 

• K-means 
– Partitions the input objects to k clusters by calculating the 

nearest mean cluster of each object belongs to. A typical 
social network benchmark 

• Sort/Grep/WordCount  
– Spark-based implementations for micro-benchmarks  

HotI '15 

Spark Benchmarks 
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• Evaluate the performance of standalone HDFS  

• Five different benchmarks 
– Sequential Write Latency (SWL) 

– Sequential or Random Read Latency (SRL or RRL) 

– Sequential Write Throughput (SWT) 

– Sequential Read Throughput (SRT) 

– Sequential Read-Write Throughput (SRWT) 

HotI '15 

OSU HiBD Micro-Benchmark (OHB) Suite - HDFS 

Benchmark File  
Name 

File 
Size 

HDFS 
Parameter 

Readers Writers Random/ 
Sequential 

Read 

Seek 
Interval 

SWL √ √ √ 

SRL/RRL √ √ √ √ √ (RRL) 

SWT √ √ √ 

SRT √ √ √ 

SRWT √ √ √ √ 

N. S. Islam, X. Lu, M. W. Rahman, J. Jose, and D. 
K. Panda, A Micro-benchmark Suite for 
Evaluating HDFS Operations on Modern 
Clusters, Int'l Workshop on Big Data 
Benchmarking (WBDB '12), December 2012. 

 

65 



• Evaluate the performance of stand-alone MapReduce 

• Does not require or involve HDFS or any other distributed file system 

• Considers various factors that influence the data shuffling phase 
– underlying network configuration, number of map and reduce tasks, intermediate 

shuffle data pattern, shuffle data size etc. 

• Three different micro-benchmarks based on intermediate shuffle data 
patterns 

– MR-AVG micro-benchmark: intermediate data is evenly distributed among 
reduce tasks. 

– MR-RAND micro-benchmark: intermediate data is pseudo-randomly 
distributed among reduce tasks. 

– MR-SKEW micro-benchmark: intermediate data is unevenly distributed 
among reduce tasks.  
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OSU HiBD Micro-Benchmark (OHB) Suite - MapReduce 

D. Shankar, X. Lu, M. W. Rahman, N. Islam, and D. K. Panda, A Micro-Benchmark Suite for Evaluating 
Hadoop MapReduce on High-Performance Networks, BPOE-5 (2014). 
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OSU HiBD Micro-Benchmark (OHB) Suite - RPC 
• Two different micro-benchmarks to evaluate the performance of standalone 

Hadoop RPC 
– Latency: Single Server, Single Client 

– Throughput: Single Server, Multiple Clients 

• A simple script framework for job launching and resource monitoring 

• Calculates statistics like Min, Max, Average 

• Network configuration, Tunable parameters, DataType, CPU Utilization 

 

 
Component Network 

Address 
Port Data Type Min Msg 

Size 
Max Msg 

Size 
No. of 

Iterations 
Handlers Verbose 

lat_client √ √ √ √ √ √ √ 

lat_server √ √ √ √ 

Component Network 
Address 

Port Data Type Min Msg 
Size 

Max Msg 
Size 

No. of 
Iterations 

No. of Clients Handlers Verbose 

thr_client √ √ √ √ √ √ √ 

thr_server √ √ √ √ √ √ 

X. Lu, M. W. Rahman, N. Islam, and D. K. Panda, A Micro-Benchmark Suite for Evaluating Hadoop RPC on High-
Performance Networks, Int'l Workshop on Big Data Benchmarking (WBDB '13), July 2013. 
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• Evaluates the performance of stand-alone Memcached 

• Three different micro-benchmarks 
– SET Micro-benchmark: Micro-benchmark for memcached set 

operations 

– GET Micro-benchmark: Micro-benchmark for memcached get 
operations 

– MIX Micro-benchmark: Micro-benchmark for a mix of memcached 
set/get operations (Read:Write ratio is 90:10) 

• Calculates average latency of Memcached operations 

• Can measure throughput in Transactions Per Second  
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OSU HiBD Micro-Benchmark (OHB) Suite - Memcached 
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• An open source project on big data benchmarking 
– http://prof.ict.ac.cn/BigDataBench 

• Measuring big data architecture and systems quantitatively 

• 14 real-world data sets and 33 big data workloads 

• Provide a tool to generate scalable data from small or medium-scale 
real-world data while preserving their original characteristics 

HotI '15 

BigDataBench 

BigDataBench: a Big Data Benchmark Suite from 
Internet Services.     HPCA 2014. 
 
BigOP: Generating Comprehensive Big Data 
Workloads as a Benchmarking Framework.   
DASFAA 2014 
 
BDGS: A Scalable Big Data Generator Suite in Big 
Data Benchmarking.           WBDB 2014. 
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• RDMA-based Designs and Performance Evaluation 
– HDFS 
– MapReduce 
– RPC 
– Spark 
– HBase 
– Memcached 

Acceleration Case Studies and In-Depth Performance 
Evaluation 
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Design Overview of HDFS with RDMA 

• Enables high performance RDMA communication, while supporting traditional socket 
interface 

• JNI Layer bridges Java based HDFS with communication library written in native code 
 

HDFS 

Verbs 

RDMA Capable Networks 
(IB, 10GE/ iWARP, RoCE ..) 

Applications 

1/10 GigE, IPoIB  
Network 

Java Socket  
Interface 

Java Native Interface (JNI) 

Write Others 

 
OSU Design 

 

• Design Features 
– RDMA-based HDFS 

write 
– RDMA-based HDFS 

replication 
– Parallel replication 

support 
– On-demand connection 

setup 
– InfiniBand/RoCE 

support 
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Communication Times in HDFS 

• Cluster with HDD DataNodes 

– 30% improvement in communication time over IPoIB (QDR) 

– 56% improvement in communication time over  10GigE 

• Similar improvements are obtained for SSD DataNodes 

Reduced  
by 30% 

HotI '15 
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N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Subramoni, C. Murthy and D. K. Panda , 
High Performance RDMA-Based Design of HDFS over InfiniBand , Supercomputing (SC), Nov 2012 

 N. Islam, X. Lu, W. Rahman, and D. K. Panda, SOR-HDFS: A SEDA-based Approach to Maximize Overlapping in 
RDMA-Enhanced HDFS,  HPDC '14,  June 2014 
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Evaluations using Enhanced DFSIO of Intel HiBench on 
TACC-Stampede 

• Cluster with 64 DataNodes, single HDD per node 
– 64% improvement in throughput over IPoIB (FDR) for 256GB file size 

– 37% improvement in latency over IPoIB (FDR) for 256GB file size 
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Triple-H 
 

Heterogeneous Storage 
 

• Design Features 
– Three modes 

• Default (HHH) 

• In-Memory (HHH-M) 

• Lustre-Integrated (HHH-L) 

– Policies to efficiently utilize the 
heterogeneous storage devices 

• RAM, SSD, HDD, Lustre 

– Eviction/Promotion based on 
data usage pattern 

– Hybrid Replication 

– Lustre-Integrated mode: 

• Lustre-based fault-tolerance 

 

Enhanced HDFS with In-memory and Heterogeneous 
Storage 

Hybrid 
Replication 

Data Placement Policies 

Eviction/ 
Promotion 

RAM Disk SSD HDD 

Lustre 
 

N. Islam, X. Lu, M. W. Rahman, D. Shankar, and D. K. Panda, Triple-H:  A Hybrid Approach to Accelerate HDFS 
on HPC Clusters with Heterogeneous Storage Architecture, CCGrid ’15,  May 2015 

Applications 
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• HHH (default): Heterogeneous storage devices with hybrid 
replication schemes 

– I/O operations over RAM disk, SSD, and HDD 

– Hybrid replication (in-memory and persistent storage) 

– Better fault-tolerance as well as performance 

• HHH-M: High-performance in-memory I/O operations  
– Memory replication (in-memory only with lazy persistence) 

– As much performance benefit as possible 

• HHH-L: Lustre integrated 
– Take advantage of the Lustre available in HPC clusters 

– Lustre-based fault-tolerance (No HDFS replication) 

– Reduced local storage space usage 

 
HotI '15 

Enhanced HDFS with In-memory and Heterogeneous 
Storage – Three Modes 
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• For 160GB TestDFSIO in 32 nodes 
– Write Throughput: 7x improvement 

over IPoIB (FDR) 

– Read Throughput: 2x improvement 
over IPoIB (FDR) 

 

 

Performance Improvement on TACC Stampede (HHH) 

• For 120GB RandomWriter in 32 
nodes 
– 3x improvement over IPoIB (QDR) 
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Increased by 7x 

Increased by 2x 
Reduced by 3x 
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• For 60GB Sort in 8 nodes 

– 24% improvement over default HDFS 

– 54% improvement over Lustre 
– 33% storage space saving compared to default HDFS 

 
 

 

Performance Improvement on SDSC Gordon (HHH-L) 
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Reduced by 54% 
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Evaluation with PUMA and CloudBurst (HHH-L/HHH) 
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• PUMA on OSU RI 

– SequenceCount with HHH-L: 17% 
benefit over Lustre, 8% over HDFS 

– Grep with HHH: 29.5% benefit over 
Lustre, 13.2% over HDFS 
 

• CloudBurst on TACC Stampede 
– With HHH: 19% improvement 

over HDFS 
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Reduced by 17% 

Reduced by 29.5% 
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• For 200GB TeraGen on 32 nodes 
– Spark-TeraGen: HHH has 2.1x improvement over HDFS-IPoIB (QDR) 

– Spark-TeraSort: HHH has 16% improvement over HDFS-IPoIB (QDR) 
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Evaluation with Spark on SDSC Gordon (HHH) 
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• RDMA-based Designs and Performance Evaluation 
– HDFS 
– MapReduce 
– RPC 
– Spark 
– HBase 
– Memcached 

Acceleration Case Studies and In-Depth Performance 
Evaluation 
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Design Overview of MapReduce with RDMA 

MapReduce 

Verbs 

RDMA Capable Networks 
(IB, 10GE/ iWARP, RoCE ..) 

OSU Design 

Applications 

1/10 GigE, IPoIB  
Network 

Java Socket  
Interface 

Java Native Interface (JNI) 

Job 
Tracker 

Task 
Tracker 

Map 

Reduce 

HotI '15 

• Enables high performance RDMA communication, while supporting traditional socket interface 
• JNI Layer bridges Java based MapReduce with communication library written in native code 

• Design Features 
– RDMA-based shuffle 
– Prefetching and caching map 

output 
– Efficient Shuffle Algorithms 
– In-memory merge 
– On-demand Shuffle 

Adjustment 
– Advanced overlapping 

• map, shuffle, and merge 
• shuffle, merge, and reduce 

– On-demand connection setup 
– InfiniBand/RoCE support 
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In-Memory Merge 

Map 1 Output (sorted) 

Map 2 Output (sorted) 

Reduce 

Shuffle 

• Sorted map output is divided into small pieces based on shuffle packet size 
and size of the key-value pairs 

• As small portion of data is shuffled, merge can take place in memory 

Merge 

To  
Reduce 

HotI '15 

M. W. Rahman, N. S. Islam, X. Lu, J. Jose, H. Subramon, H. Wang, and D. K. Panda, High-Performance RDMA-
based Design of Hadoop MapReduce over InfiniBand, HPDIC Workshop, held in conjunction with IPDPS, May 
2013. 
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In-Memory Merge 

Map 1 Output (sorted) 

Map 2 Output (sorted) 

Reduce 

Shuffle 

• Sorted map output is divided into small pieces based on shuffle packet size 
and size of the key-value pairs 

• As small portion of data is shuffled, merge can take place in memory 

Merge 

To  
Reduce 
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In-Memory Merge 

Map 1 Output (sorted) 

Map 2 Output (sorted) 

Reduce 

Shuffle 

• Sorted map output is divided into small pieces based on shuffle packet size 
and size of the key-value pairs 

• As small portion of data is shuffled, merge can take place in memory 

Merge 

To  
Reduce 
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   Advanced Overlapping among different phases 

• A hybrid approach to achieve 
maximum possible overlapping 
in MapReduce across all phases 
compared to other approaches 
– Efficient Shuffle Algorithms 
– Dynamic and Efficient Switching 
– On-demand Shuffle Adjustment 

Default Architecture 

Enhanced Overlapping 

Advanced Overlapping 

M. W. Rahman, X. Lu, N. S. Islam, and D. K. Panda, 
HOMR: A Hybrid Approach to Exploit Maximum 
Overlapping in MapReduce over High Performance 
Interconnects, ICS, June 2014. 
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Evaluations using OHB MapReduce Micro-benchmark 

• Stand-alone MapReduce micro-benchmark (MR-AVG) 

• 1 KB key/value pair size  

• For 8 slave nodes, RDMA has up to 30% over IPoIB (56Gbps)  

• For 16 slave nodes, RDMA has up to 28% over IPoIB (56Gbps) 

 

8 slave nodes 16 slave nodes 
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• For 240GB Sort in 64 nodes (512 
cores) 
– 40% improvement over IPoIB (QDR) 

with HDD used for HDFS 

Performance Evaluation of Sort and TeraSort 
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0

200

400

600

800

1000

1200

Data Size: 60 GB Data Size: 120 GB Data Size: 240 GB

Cluster Size: 16 Cluster Size: 32 Cluster Size: 64

Jo
b 

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

) 

IPoIB (QDR) UDA-IB (QDR) OSU-IB (QDR)

Sort in OSU Cluster 

0

100

200

300

400

500

600

700

Data Size: 80 GB Data Size: 160 GBData Size: 320 GB

Cluster Size: 16 Cluster Size: 32 Cluster Size: 64

Jo
b 

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

) 

IPoIB (FDR) UDA-IB (FDR) OSU-IB (FDR)

TeraSort in TACC Stampede 

• For 320GB TeraSort in 64 nodes 
(1K cores) 
– 38% improvement over IPoIB 

(FDR) with HDD used for HDFS 
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• 50% improvement in Self Join over IPoIB (QDR) for 80 GB data size 

• 49% improvement in Sequence Count over IPoIB (QDR) for 30 GB data size 

Evaluations using PUMA Workload 
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• 50 small MapReduce jobs executed in a cluster size of 4 

• Maximum performance benefit 24% over IPoIB (QDR)  

• Average performance benefit 13% over IPoIB (QDR)  

Evaluations using SWIM 

15

20

25

30

35

40

1 6 11 16 21 26 31 36 41 46

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

) 

Job Number 

IPoIB (QDR) OSU-IB (QDR)

HotI '15 90 



Optimize Hadoop YARN MapReduce over Parallel File 
Systems 

MetaData Servers 

Object Storage Servers 

Compute Nodes 
App Master 

Map Reduce 

Lustre Client 

Lustre Setup 

• HPC Cluster Deployment 
– Hybrid topological solution of Beowulf 

architecture with separate I/O nodes 
– Lean compute nodes with light OS; more 

memory space; small local storage 
– Sub-cluster of dedicated I/O nodes with 

parallel file systems, such as Lustre 
• MapReduce over Lustre 

– Local disk is used as the intermediate data 
directory 

– Lustre is used as the intermediate data 
directory 
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Intermediate Data Directory 

Design Overview of Shuffle Strategies for MapReduce over 
Lustre 

HotI '15 

• Design Features 
– Two shuffle approaches 

• Lustre read based shuffle 
• RDMA based shuffle 

– Hybrid shuffle algorithm to 
take benefit from both shuffle 
approaches 

– Dynamically adapts to the 
better shuffle approach for 
each shuffle request based on 
profiling values for each Lustre 
read operation 

– In-memory merge and 
overlapping of different phases 
are kept similar to RDMA-
enhanced MapReduce design 

Map 1 Map 2 Map 3 

Lustre 

Reduce 1 Reduce 2 

Lustre Read / RDMA 

In-memory 
merge/sort 

reduce 

M. W. Rahman, X. Lu, N. S. Islam, R. Rajachandrasekar, and D. K. Panda, High Performance Design of YARN 
MapReduce on Modern HPC Clusters with Lustre and RDMA, IPDPS, May 2015. 

In-memory 
merge/sort 

reduce 
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• For 500GB Sort in 64 nodes 
– 44% improvement over IPoIB (FDR) 

Performance Improvement of MapReduce over Lustre on 
TACC-Stampede 

HotI '15 

• For 640GB Sort in 128 nodes 
– 48% improvement over IPoIB (FDR) 
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M. W. Rahman, X. Lu, N. S. Islam, R. Rajachandrasekar, and D. K. Panda, MapReduce over Lustre: Can RDMA-
based Approach Benefit?, Euro-Par, August 2014. 

• Local disk is used as the intermediate data directory 
Reduced by 48% Reduced by 44% 
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• For 80GB Sort in 8 nodes 
– 34% improvement over IPoIB (QDR) 

Case Study - Performance Improvement of MapReduce 
over Lustre on SDSC-Gordon 

HotI '15 

• For 120GB TeraSort in 16 nodes 
– 25% improvement over IPoIB (QDR) 

• Lustre is used as the intermediate data directory 
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Reduced by 25% Reduced by 34% 
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• RDMA-based Designs and Performance Evaluation 
– HDFS 
– MapReduce 
– RPC 
– Spark 
– HBase 
– Memcached 

Acceleration Case Studies and In-Depth Performance 
Evaluation 
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Design Overview of Hadoop RPC with RDMA 

Hadoop RPC 

Verbs 

RDMA Capable Networks 
(IB, 10GE/ iWARP, RoCE ..) 

Applications 

1/10 GigE, IPoIB  
Network 

Java Socket  
Interface 

Java Native Interface (JNI) 

Our Design 
 

Default 

 
OSU Design 

 

• Design Features 
– JVM-bypassed buffer 

management 
– RDMA or send/recv based 

adaptive communication 
– Intelligent buffer 

allocation and adjustment 
for serialization 

– On-demand connection 
setup 

– InfiniBand/RoCE support 

 

HotI '15 

• Enables high performance RDMA communication, while supporting traditional socket 
interface 

• JNI Layer bridges Java based RPC with communication library written in native code 
 X. Lu, N. Islam, M. W. Rahman, J. Jose, H. Subramoni, H. Wang, and D. K. Panda, High-Performance Design of 

Hadoop RPC with RDMA over InfiniBand, Int'l Conference on Parallel Processing (ICPP '13), October 2013. 
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Hadoop RPC with RDMA - Gain in Latency and Throughput 

• Hadoop RPC with RDMA PingPong Latency 

– 1 byte: 30 us; 4 KB: 38 us 

–  59%-62% and 60%-63% improvements compared with the performance on 10 GigE 
and IPoIB (32Gbps), respectively 

• Hadoop RPC with RDMA Throughput 

– 512 bytes & 56 clients: 170.63 Kops/sec 

–  129% and 107% improvements compared with the peak performance on 10 GigE 
and IPoIB (32Gbps), respectively 

 HotI '15 
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Hadoop RPC over IB - Gain in MapReduce and HDFS 

• The performance gains in MapReduce benchmarks  

• RandomWriter: up to 12% improvement over IPoIB 

• Sort: up to 15.2% improvement over IPoIB 

• The latency of HDFS Write is reduced by 10% compared to Hadoop RPC 
running on IPoIB and OSU-IB HDFS only 

MapReduce RandomWriter & Sort HDFS Write Micro-Benchmark 
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• RDMA-based Designs and Performance Evaluation 
– HDFS 
– MapReduce 
– RPC 
– Spark 
– HBase 
– Memcached 

Acceleration Case Studies and In-Depth Performance 
Evaluation 
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Design Overview of Spark with RDMA 

• Design Features 
– RDMA based shuffle 
– SEDA-based plugins 
– Dynamic connection 

management and sharing 
– Non-blocking and out-of-

order data transfer 
– Off-JVM-heap buffer 

management 
– InfiniBand/RoCE support 

 

HotI '15 

• Enables high performance RDMA communication, while supporting traditional socket 
interface 

• JNI Layer bridges Scala based Spark with communication library written in native code 
 X. Lu, M. W. Rahman, N. Islam, D. Shankar, and D. K. Panda, Accelerating Spark with RDMA for Big Data 

Processing: Early Experiences, Int'l Symposium on High Performance Interconnects (HotI'14), August 2014 
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Performance Evaluation on TACC Stampede - GroupByTest 

• Intel SandyBridge + FDR 

• Cluster with 8 HDD Nodes, single disk per node, 128 concurrent tasks 
–  up to 83% over IPoIB (56Gbps)  

• Cluster with 16 HDD Nodes, single disk per node, 256 concurrent tasks 
– up to 79% over IPoIB (56Gbps)  

8 Worker Nodes, 128 Cores, (128M 128R) 16 Worker Nodes, 256 Cores, (256M 256R) 
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Performance Analysis on TACC Stampede 

• Overall lower memory footprint 

• Much faster block fetch time with RDMA 

• Total Job Execution Time 
– IPoIB: 294 secs; RDMA: 230 secs 

–  up to 22% over IPoIB (56Gbps)  

Memory Footprint Block Fetch Time 
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Performance Evaluation on TACC Stampede - SortByTest 

• Intel SandyBridge + FDR, 16 Worker Nodes, 256 Cores, (256M 256R) 

• RDMA-based design for Spark 1.4.0  

• RDMA vs. IPoIB with 256 concurrent tasks, single disk per node and 
RamDisk. For SortByKey Test: 

– Shuffle time reduced by up to 77% over IPoIB (56Gbps)  

– Total time reduced by up to 58% over IPoIB (56Gbps)  

 

16 Worker Nodes, SortByTest Shuffle Time 16 Worker Nodes, SortByTest Total Time 
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• RDMA-based Designs and Performance Evaluation 
– HDFS 
– MapReduce 
– RPC 
– Spark 
– HBase 
– Memcached 

Acceleration Case Studies and In-Depth Performance 
Evaluation 
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HotI '15 

HBase-RDMA Design Overview 

• JNI Layer bridges Java based HBase with communication library written in 
native code 

• Enables high performance RDMA communication, while supporting 
traditional socket interface 

HBase 

IB Verbs 

RDMA Capable Networks 
(IB, 10GE/ iWARP, RoCE ..) 

OSU-IB Design 

Applications 

1/10 GigE, IPoIB  
Networks 

Java Socket  
Interface 

Java Native Interface 
(JNI) 
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HotI '15 

HBase Micro-benchmark (Single-Server-Multi-
Client) Results 

• HBase Get latency 

– 4 clients: 104.5 us; 16 clients: 296.1 us 

• HBase Get throughput 

– 4 clients: 37.01 Kops/sec; 16 clients: 53.4 Kops/sec 

• 27% improvement in throughput for 16 clients over 10GE 
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J. Huang, X. Ouyang, J. Jose, M. W. Rahman, H. Wang, M. Luo, H. Subramoni, Chet Murthy, and D. K. Panda, 
High-Performance Design of HBase with RDMA over InfiniBand, IPDPS’12 
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HBase – YCSB Read-Write Workload 

• HBase Get latency (Yahoo! Cloud Service Benchmark) 
– 64 clients: 2.0 ms; 128 Clients: 3.5 ms 
– 42% improvement over IPoIB for 128 clients 

• HBase Put latency 
– 64 clients: 1.9 ms; 128 Clients: 3.5 ms 
– 40% improvement over IPoIB for 128 clients 
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• RDMA-based Designs and Performance Evaluation 
– HDFS 
– MapReduce 
– RPC 
– Spark 
– HBase 
– Memcached 

Acceleration Case Studies and In-Depth Performance 
Evaluation 
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Memcached-RDMA Design 

• Server and client perform a negotiation protocol 
– Master thread assigns clients to appropriate worker thread 

• Once a client is assigned a verbs worker thread, it can communicate directly and is 
“bound” to that thread 

• All other Memcached data structures are shared among RDMA and Sockets worker 
threads 

• Memcached Server can serve both socket and verbs clients simultaneously 

• Memcached applications need not be modified; uses verbs interface if available 

Sockets 
Client 

RDMA 
Client 

Master 
Thread 

Sockets 
Worker 
Thread 

Verbs 
Worker 
Thread 

Sockets 
Worker 
Thread 

Verbs 
Worker 
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• Memcached Get latency 
– 4 bytes OSU-IB: 2.84 us; IPoIB: 75.53 us 
– 2K bytes OSU-IB: 4.49 us; IPoIB: 123.42 us 

• Memcached Throughput (4bytes) 
– 4080 clients OSU-IB: 556 Kops/sec, IPoIB: 233 Kops/s 
– Nearly 2X improvement in throughput 
 

Memcached GET Latency Memcached Throughput 

Memcached Performance (FDR Interconnect) 

Experiments on TACC Stampede (Intel SandyBridge Cluster, IB: FDR) 

Latency Reduced  
by nearly 20X 

2X 
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HotI '15 

Application Level Evaluation –  
Real Application Workloads 

• Real Application Workload  
– RC – 302 ms, UD – 318 ms, Hybrid – 314 ms for 1024 clients 

• 12X times better than IPoIB for 8 clients 
• Hybrid design achieves comparable performance to that of pure RC design 
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J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. W. Rahman, N. Islam, X. Ouyang, H. Wang, S. Sur and 
D. K. Panda, Memcached Design on High Performance RDMA Capable Interconnects, ICPP’11 

J. Jose, H. Subramoni, K. Kandalla, M. W. Rahman, H. Wang, S. Narravula, and D. K. Panda, Scalable 
Memcached design for InfiniBand Clusters using Hybrid Transport, CCGrid’12  
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OSU-Hybrid-IB (QDR) 
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• Illustration with Read-Cache-Read access pattern using modified 
mysqlslap load testing tool  

• Memcached-RDMA can  
- improve query latency by up to 66% over IPoIB (32Gbps) 

- throughput by up to 69% over IPoIB (32Gbps) 
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Micro-benchmark Evaluation for OLDP workloads  
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D. Shankar, X. Lu, J. Jose, M. W. Rahman, N. Islam, and D. K. Panda, Can RDMA Benefit On-Line Data 
Processing Workloads with Memcached and MySQL, ISPASS’15 

Reduced by 66% 
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Transactional workloads.  Example: TATP 
• Up to 29% improvement in overall throughput as compared to default 

Memcached running over IPoIB 

Web-Oriented workloads. Example: Twitter workload 

• Up to 42% improvement in overall throughput compared to default 
Memcached running over IPoIB 
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Evaluation with Transactional and Web-oriented Workloads 

Evaluation with TATP workload using modified 
OLTP-Bench 

Evaluation with Twitter Workload using modified 
OLTP-Bench 

0

10

20

30

40

50

60

4 8 16 32

Th
ro

ug
hp

ut
  (

Kq
/s

) 

No. of Clients 

Memcached-IPoIB (32Gbps)

Memcached-RDMA (32Gbps)

0

10

20

30

40

50

4 8 16 32 64 128

Th
ro

ug
hp

ut
  (

Kq
/s

) 

No. of Clients 

Memcached-IPoIB (32Gbps)

Memcached-RDMA (32Gbps)

113 



• Overview 
– MapReduce and RDD Programming Models 
– Apache Hadoop, Spark, and Memcached 
– Modern Interconnects and Protocols 

• Challenges in Accelerating Hadoop, Spark, and Memcached 
• Benchmarks and Applications using Hadoop, Spark, and 

Memcached 
• Acceleration Case Studies and In-Depth Performance Evaluation 
• The High-Performance Big Data (HiBD) Project and Associated 

Releases 
• Ongoing/Future Activities for Accelerating Big Data Applications  
• Conclusion and Q&A 

Presentation Outline 
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• RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x) 
– Plugins for Apache and HDP Hadoop distributions 

• RDMA for Apache Hadoop 1.x (RDMA-Hadoop) 

• RDMA for Memcached (RDMA-Memcached) 

• OSU HiBD-Benchmarks (OHB) 

– HDFS and Memcached Micro-benchmarks 

• http://hibd.cse.ohio-state.edu 

• Users Base: 125 organizations from  20 countries 

• More than 13,000 downloads from the project site 

• RDMA for Apache HBase, Spark and CDH 

 

The High-Performance Big Data (HiBD) Project 
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Different Modes of RDMA for Apache Hadoop 2.x 

• HHH: Heterogeneous storage devices with hybrid replication schemes are supported in this mode of operation to 
have better fault-tolerance as well as performance. This mode is enabled by default in the package.  

• HHH-M: A high-performance in-memory based setup has been introduced in this package that can be utilized to 
perform all I/O operations in-memory and obtain as much performance benefit as possible.  

• HHH-L: With parallel file systems integrated, HHH-L mode can take advantage of the Lustre available in the cluster.  

• MapReduce over Lustre, with/without local disks: Besides, HDFS based solutions, this package also provides 
support to run MapReduce jobs on top of Lustre alone. Here, two different modes are introduced: with local disks 
and without local disks. 

• Running with Slurm and PBS: Supports deploying RDMA for Apache Hadoop 2.x with Slurm and PBS in different 
running modes (HHH, HHH-M, HHH-L, and MapReduce over Lustre). 



• High-Performance Design of Hadoop over RDMA-enabled Interconnects 

– High performance RDMA-enhanced design with native InfiniBand and RoCE support at the verbs-level 
for HDFS, MapReduce, and RPC components 

– Enhanced HDFS with in-memory and heterogeneous storage 

– High performance design of MapReduce over Lustre 

– Plugin-based architecture supporting RDMA-based designs for Apache Hadoop and HDP 

– Easily configurable for different running modes (HHH, HHH-M, HHH-L, and MapReduce over Lustre) 
and different protocols (native InfiniBand, RoCE, and IPoIB) 

• Current release: 0.9.7  

– Based on Apache Hadoop 2.6.0 

– Compliant with Apache Hadoop 2.6.0 and HDP 2.2.0.0 APIs and applications 

– Tested with 
• Mellanox InfiniBand adapters (DDR, QDR and FDR) 

• RoCE support with Mellanox adapters 

• Various multi-core platforms 

• Different file systems with disks and SSDs and Lustre 

– http://hibd.cse.ohio-state.edu 

RDMA for Apache Hadoop 2.x Distribution 
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• High-Performance Design of Memcached over RDMA-enabled Interconnects 

– High performance RDMA-enhanced design with native InfiniBand and RoCE 
support at the verbs-level for Memcached and libMemcached components 

– High performance design of SSD-Assisted Hybrid Memory 

– Easily configurable for native InfiniBand, RoCE and the traditional sockets-based 
support (Ethernet and InfiniBand with IPoIB) 

• Current release: 0.9.3  

– Based on Memcached 1.4.22 and libMemcached 1.0.18 

– Compliant with libMemcached APIs and applications 

– Tested with 
• Mellanox InfiniBand adapters (DDR, QDR and FDR) 
• RoCE support with Mellanox adapters 
• Various multi-core platforms 
• SSD 

– http://hibd.cse.ohio-state.edu 

RDMA for Memcached Distribution 
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• Micro-benchmarks for Hadoop Distributed File System (HDFS)  
– Sequential Write Latency (SWL) Benchmark, Sequential Read Latency 

(SRL) Benchmark, Random Read Latency (RRL) Benchmark, Sequential 
Write Throughput (SWT) Benchmark, Sequential Read Throughput (SRT) 
Benchmark  

– Support benchmarking of  
• Apache Hadoop 1.x and 2.x HDFS, Hortonworks Data Platform (HDP) HDFS, 

Cloudera Distribution of Hadoop (CDH) HDFS  

• Micro-benchmarks for Memcached  
– Get Benchmark, Set Benchmark, and  Mixed Get/Set Benchmark 

• Current release: 0.8 

• http://hibd.cse.ohio-state.edu 
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OSU HiBD Micro-Benchmark (OHB) Suite – HDFS & Memcached 
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• New Features 
– Enhanced HDFS with In-memory and Heterogeneous Storage 

• Standalone, Lustre-integrated 

– Lustre-based designs for MapReduce 

• Distributions 
– Apache Hadoop 

– HDP 

• Testbeds 
– TACC-Stampede (HDD, FDR) 

– SDSC-Gordon (SSD, QDR) 

• Benchmarks 
– TestDFSIO 

– Sort & TeraSort 

– RandomWriter & TeraGen   

HotI '15 

Performance Numbers of RDMA for Apache Hadoop 2.x 
0.9.7  
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Performance Benefits – RandomWriter & TeraGen in TACC-Stampede 

Cluster with 32 Nodes with a total of 128 maps 

• RandomWriter 
– 3-4x improvement over IPoIB 

for 80-120 GB file size 

• TeraGen 
– 4-5x improvement over IPoIB 

for 80-120 GB file size 

RandomWriter TeraGen 

Reduced by 3x Reduced by 4x 
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Performance Benefits – Sort & TeraSort in TACC-Stampede 

Cluster with 32 Nodes with a total of  
128 maps and 64 reduces 

• Sort with single HDD per node 
– 40-52% improvement over IPoIB 

for 80-120 GB data  

• TeraSort with single HDD per node 
– 42-44% improvement over IPoIB 

for 80-120 GB data 

Reduced by 52% Reduced by 44% 

Cluster with 32 Nodes with a total of  
128 maps and 57 reduces 
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Performance Benefits – TestDFSIO and Sort in SDSC-Gordon 
(Lustre-Integrated Mode) 
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• Sort 
– up to 28% improvement over 

HDFS 

– up to 50% improvement over 
Lustre  

Sort TestDFSIO 

• TestDFSIO for 80GB data size 
– Write: 9x improvement over 

HDFS 

– Read: 29% improvement over 
Lustre  

Cluster with 16 Nodes 
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Performance Benefits for MR over Lustre – TeraSort & Sort in 
TACC-Stampede 

Cluster with 32 Nodes with a total of  
128 maps and 57 reduces 

• TeraSort with local disks for 
intermediate data 
– 11-30% improvement over IPoIB 

for 80-120 GB data  

• Sort with local disks for 
intermediate data 
– 43-56% improvement over IPoIB 

for 80-120 GB data 

Reduced by 30% Reduced by 56% 

Cluster with 32 Nodes with a total of  
128 maps and 64 reduces 
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Performance Benefits for MR over Lustre – TeraSort & Sort in 
TACC-Stampede 

Cluster with 32 Nodes with a total of  
128 maps and 57 reduces 

• TeraSort with Lustre for 
intermediate data 
– 19-34% improvement over IPoIB 

for 80-120 GB data  

• Sort with Lustre for intermediate 
data 
– 10-20% improvement over  

 IPoIB for 80-120 GB data 

Reduced by 34% Reduced by 20% 

Cluster with 32 Nodes with a total of  
128 maps and 64 reduces 
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• New Features 
– SSD-assisted Hybrid Memory 

• Testbeds 
– SDSC-Gordon (SSD, QDR) 

– OSU RI Cluster (SSD, QDR) 

• Benchmarks 
– ohb_memlat/ohb_memthr 

– ohb_memhybrid  

HotI '15 

Performance Numbers of RDMA for Memcached 0.9.3  
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• ohb_memlat & ohb_memthr latency & throughput micro-benchmarks 

• Memcached-RDMA can 
- improve query latency by up to 70% over IPoIB (32Gbps) 

- improve throughput by up to 2X over IPoIB (32Gbps) 

- No overhead in using hybrid mode when all data can fit in memory 

 HotI '15 

Performance Benefits on SDSC-Gordon – OHB Latency & 
Throughput Micro-Benchmarks 
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ohb_memhybrid – Uniform Access Pattern,  single client and single server with 64MB 

• Success Rate of In-Memory Vs. Hybrid SSD-Memory for different spill factors 

– 100% success rate for Hybrid design while that of pure In-memory degrades  

• Average Latency with penalty for In-Memory Vs. Hybrid SSD-Assisted mode for spill 
factor 1.5. 

– up to 53% improvement over In-memory with server miss penalty as low as 1.5 
ms 

Performance Benefits on OSU-RI-SSD – OHB Micro-benchmark for 
Hybrid Memcached 
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• Overview 
– MapReduce and RDD Programming Models 
– Apache Hadoop, Spark, and Memcached 
– Modern Interconnects and Protocols 

• Challenges in Accelerating Hadoop, Spark, and Memcached 
• Benchmarks and Applications using Hadoop, Spark, and 

Memcached 
• Acceleration Case Studies and In-Depth Performance Evaluation 
• The High-Performance Big Data (HiBD) Project and Associated 

Releases 
• Ongoing/Future Activities for Accelerating Big Data Applications  
• Conclusion and Q&A 

Presentation Outline 
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Big Data Middleware 
(HDFS, MapReduce, HBase, Spark and Memcached) 

Networking Technologies 
(InfiniBand, 1/10/40GigE 

and Intelligent NICs) 

 
Storage Technologies 

(HDD and SSD) 

Programming Models 
(Sockets) 

Applications 

Commodity Computing System 
Architectures 

(Multi- and Many-core 
architectures and accelerators) 

Other Protocols? 

Communication and I/O Library 

Point-to-Point 
Communication 

QoS 

Threaded Models 
and Synchronization 

Fault-Tolerance I/O and File Systems 

Virtualization 

Benchmarks 

RDMA Protocol 

Designing Communication and I/O Libraries for Big 
Data Systems: Solved a Few Initial Challenges  
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Upper level 
Changes? 
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• Multi-threading and Synchronization  
– Multi-threaded model exploration 

– Fine-grained synchronization and lock-free design 

– Unified helper threads for different components  

– Multi-endpoint design to support multi-threading communications 

• QoS and Virtualization 
– Network virtualization and locality-aware communication for Big Data middleware 

– Hardware-level virtualization support for End-to-End QoS 

– I/O scheduling and storage virtualization  

– Live migration 

• Support of Accelerators 
– Efficient designs for Big Data middleware to take advantage of NVIDA GPGPUs and Intel 

MICs 

– Offload computation-intensive workload to accelerators 

– Explore maximum overlapping between communication and offloaded computation 

• Big Data Benchmarking 
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More Challenges 
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• The current benchmarks provide some performance 
behavior 

• However, do not provide any information to the 
designer/developer on: 
– What is happening at the lower-layer? 

– Where the benefits are coming from? 

– Which design is leading to benefits or bottlenecks? 

– Which component in the design needs to be changed and what will 
be its impact? 

– Can performance gain/loss at the lower-layer be correlated to the 
performance gain/loss observed at the upper layer?    
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Big Data Middleware 
(HDFS, MapReduce, HBase, Spark and Memcached) 

Networking Technologies 
(InfiniBand, 1/10/40GigE 

and Intelligent NICs) 

 
Storage Technologies 

(HDD and SSD) 

Programming Models 
(Sockets) 

Applications 

Commodity Computing System 
Architectures 

(Multi- and Many-core 
architectures and accelerators) 

Other Protocols? 

Communication and I/O Library 

Point-to-Point 
Communication 

QoS 

Threaded Models 
and Synchronization 

Fault-Tolerance I/O and File Systems 

Virtualization 

Benchmarks 

RDMA Protocols 

Challenges in Benchmarking of RDMA-based Designs 

Current 
Benchmarks 

No Benchmarks 

Correlation? 
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OSU MPI Micro-Benchmarks (OMB) Suite 
• A comprehensive suite of benchmarks to  

– Compare performance of different MPI libraries on various networks and systems 
– Validate low-level functionalities 
– Provide insights to the underlying MPI-level designs 

• Started with basic send-recv (MPI-1) micro-benchmarks for latency, bandwidth and 
bi-directional bandwidth 

• Extended later to 
– MPI-2 one-sided 
– Collectives 
– GPU-aware data movement 
– OpenSHMEM (point-to-point and collectives) 
– UPC 

• Has become an industry standard  
• Extensively used for design/development of MPI libraries, performance comparison 

of MPI libraries and even in procurement of large-scale systems 
• Available from http://mvapich.cse.ohio-state.edu/benchmarks 

• Available in an integrated manner with MVAPICH2 stack  
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Big Data Middleware 
(HDFS, MapReduce, HBase, Spark and Memcached) 

Networking Technologies 
(InfiniBand, 1/10/40GigE 

and Intelligent NICs) 

 
Storage Technologies 

(HDD and SSD) 

Programming Models 
(Sockets) 

Applications 

Commodity Computing System 
Architectures 

(Multi- and Many-core 
architectures and accelerators) 

Other Protocols? 

Communication and I/O Library 

Point-to-Point 
Communication 

QoS 

Threaded Models 
and Synchronization 

Fault-Tolerance I/O and File Systems 

Virtualization 

Benchmarks 

RDMA Protocols 

Iterative Process – Requires Deeper Investigation and 
Design for Benchmarking Next Generation Big Data 
Systems and Applications  
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Applications-
Level 

Benchmarks 

Micro-
Benchmarks 
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• Upcoming Releases of RDMA-enhanced Packages will support 
– CDH plugin 

– Spark 

– HBase 

• Upcoming Releases of OSU HiBD Micro-Benchmarks (OHB) will 
support 

– MapReduce, RPC 

• Exploration of other components (Threading models, QoS, 
Virtualization, Accelerators, etc.) 

• Advanced designs with upper-level changes and optimizations 

Upcoming HiBD Releases and Future Activities 
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• Overview 
– MapReduce and RDD Programming Models 
– Apache Hadoop, Spark, and Memcached 
– Modern Interconnects and Protocols 

• Challenges in Accelerating Hadoop, Spark, and Memcached 
• Benchmarks and Applications using Hadoop, Spark, and 

Memcached 
• Acceleration Case Studies and In-Depth Performance Evaluation 
• The High-Performance Big Data (HiBD) Project and Associated 

Releases 
• Ongoing/Future Activities for Accelerating Big Data Applications  
• Conclusion and Q&A 

Presentation Outline 
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• Presented an overview of Big Data, Hadoop (MapReduce, HDFS, 
HBase, Spark, RPC) and Memcached 

• Provided an overview of Networking Technologies 

• Discussed challenges in accelerating Hadoop and Memcached 

• Presented initial designs to take advantage of InfiniBand/RDMA 
for HDFS, MapReduce, HBase, Spark, RPC and Memcached 

• Results are promising  

• Many other open issues need to be solved  

• Will enable Big Data community to take advantage of modern 
HPC technologies to carry out their analytics in a fast and scalable 
manner  
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Concluding Remarks 
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International Workshop on  
High-Performance Big Data Computing 

(HPBDC 2015) 
 Held with Int’l Conference on Distributed Computing Systems (ICDCS ‘15) 

In Hilton Downtown, Columbus, Ohio, USA, Monday, June 29th, 2015 

 
Two Keynote Talks: Dan Stanzione (TACC) and Zhiwei Xu (ICT/CAS) 

Two Invited Talks: Jianfeng Zhan (ICT/CAS), Raghunath Nambiar (Cisco) 
Panel: Jianfeng Zhan (ICT/CAS) 

Four Research Papers 
 

http://web.cse.ohio-state.edu/~luxi/hpbdc2015 
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Network-Based Computing Laboratory 

http://nowlab.cse.ohio-state.edu/ 
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The High-Performance Big Data Project 
http://hibd.cse.ohio-state.edu/ 
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