
In Search of an Understandable Consensus Algorithm

Diego Ongaro and John Ousterhout

Stanford University

(Draft of September 10, 2013)

Abstract
Raft is a consensus algorithm for managing a replicated

log. It produces a result equivalent to (multi-)Paxos, and

it is as efficient as Paxos, but its structure is different

from Paxos; this makes Raft more understandable than

Paxos and also provides a better foundation for building

practical systems. In order to enhance understandabil-

ity, Raft separates the key elements of consensus, such as

leader election, log replication, and safety, and it enforces

a stronger degree of coherency to reduce the number of

states that must be considered. Raft also includes a new

mechanism for changing the cluster membership, which

uses overlapping majorities to guarantee safety. Results

from a user study demonstrate that Raft is easier for stu-

dents to learn than Paxos.

1 Introduction
Consensus algorithms allow a collection of machines

to work as a coherent group that can survive the failures

of some of its members. Because of this, they play a

key role in building reliable large-scale software systems.

Paxos [13, 14] has dominated the discussion of consen-

sus algorithms over the last decade: most implementa-

tions of consensus are based on Paxos or influenced by it,

and Paxos has become the primary vehicle used to teach

students about consensus.

Unfortunately, Paxos is quite difficult to understand, in

spite of numerous attempts to make it more approach-

able. Furthermore, its architecture is unsuitable for build-

ing practical systems, requiring complex changes to cre-

ate an efficient and complete solution. As a result, both

system builders and students struggle with Paxos.

After struggling with Paxos ourselves, we set out to

find a new consensus algorithm that could provide a bet-

ter foundation for system building and education. Our ap-

proach was unusual in that our primary goal was under-

standability: could we define a consensus algorithm and

describe it in a way that is significantly easier to learn than

Paxos, and that facilitates the development of intuitions

that are essential for system builders? It was important

not just for the algorithm to work, but for it to be obvi-

ous why it works. In addition, the algorithm needed to be

complete enough to cover all the major issues required for

an implementation.

The result of this work is a consensus algorithm called

Raft. In designing Raft we applied specific techniques to

improve understandability, including decomposition (Raft

separates leader election, log replication, and safety) and

state space reduction (Raft reduces the degree of nonde-

terminism and the ways servers can be inconsistent with

each other). A user study with 43 students at two univer-

sities shows that Raft is significantly easier to understand

than Paxos: after learning both algorithms, students were

able to answer questions about Raft 23% better than ques-

tions about Paxos.

Raft is similar in many ways to existing consensus al-

gorithms (most notably, Oki and Liskov’s Viewstamped

Replication [27, 20]), but it has several novel features:

• Strong leader: Raft uses a stronger form of leader-

ship than other consensus algorithms. For example,

log entries only flow from the leader to other servers.

This simplifies the management of the replicated log

and makes Raft easier to understand.

• Leader election: Raft uses randomized timers to

elect leaders. This adds only a small amount of

mechanism to the heartbeats already required for any

consensus algorithm, while resolving conflicts sim-

ply and rapidly.

• Membership changes: Raft’s mechanism for

changing the set of servers in the cluster uses a novel

joint consensus approach where the majorities of two

different configurations overlap during transitions.

This allows the cluster to continue operating nor-

mally during configuration changes.

We believe that Raft is superior to Paxos and other con-

sensus algorithms, both for educational purposes and as

a foundation for implementation. It is simpler and more

understandable than other algorithms; it is described com-

pletely enough to meet the needs of a practical system;

it has several open-source implementations; its safety re-

quirements have been formally specified and proven; and

its efficiency is comparable to other algorithms.

The remainder of the paper introduces the replicated

state machine problem (Section 2), discusses the strengths

and weaknesses of Paxos (Section 3), describes our gen-

eral approach to understandability (Section 4), presents

the Raft consensus algorithm (Sections 5-8), evaluates

Raft (Section 9), and discusses related work (Section 10).

2 Achieving fault-tolerance with replicated

state machines

Consensus algorithms typically arise in the context of

replicated state machines [32]. In this approach, state ma-

chines on a collection of servers compute identical copies

of the same state and can continue operating even if some

of the servers are down. Replicated state machines are

used to solve a variety of fault-tolerance problems in dis-

1

Figure 1: Replicated state machine architecture. A consen-

sus module manages a replicated log containing state ma-

chine commands from clients. The state machines process

identical sequences of commands from the logs, so they pro-

duce the same outputs.

tributed systems. For example, large-scale systems that

have a single cluster leader, such as GFS [6], HDFS [33],

and RAMCloud [28], typically use a separate replicated

state machine to manage leader election and store config-

uration information that must survive leader crashes. Ex-

amples of replicated state machines include Chubby [1]

and ZooKeeper [9].

Replicated state machines are typically implemented

using a replicated log, as shown in Figure 1. Each server

stores a log containing a series of commands, which its

state machine executes in order. Each log contains the

same commands in the same order, so each state machine

processes the same sequence of commands. Since the

state machines are deterministic, each computes the same

state and the same sequence of outputs.

Keeping the replicated log consistent is the job of the

consensus algorithm. As shown in Figure 1, the consen-

sus module on a server receives commands from clients

and adds them to its log. It communicates with the con-

sensus modules on other servers to ensure that every log

eventually contains the same requests in the same order,

even if some servers fail. Once commands are properly

replicated, each server’s state machine processes them in

log order, and the outputs are returned to clients. As a

result, the servers appear to form a single, highly-reliable

state machine.

Consensus algorithms for practical systems typically

have the following properties:

• They ensure safety (never returning an incorrect re-

sult) under all non-Byzantine conditions, including

network delays, partitions, and packet loss, duplica-

tion, and reordering.

• They are fully functional (available) as long as any

majority of the servers are operational and can com-

municate with each other and with clients. Thus, a

typical cluster of five servers can tolerate the failure

of any two servers. Servers are assumed to fail by

stopping; they may later recover from state on stable

storage and rejoin the cluster.

• They do not depend on timing to ensure the consis-

tency of the logs: faulty clocks and extreme message

delays can, at worst, cause availability problems.

• In the common case, a command can complete as

soon as any majority of the cluster has responded to

a single round of remote procedure calls; a minority

of slow servers need not impact overall system per-

formance.

3 What’s wrong with Paxos?
Over the last ten years, Leslie Lamport’s Paxos pro-

tocol [13] has become almost synonymous with consen-

sus: it is the protocol most commonly taught in courses,

and most implementations of consensus use it as a starting

point. Paxos first defines a protocol capable of reaching

agreement on a single decision, such as a single replicated

log entry. We refer to this subset as single-decree Paxos.

Paxos then combines multiple instances of this protocol to

facilitate a series of decisions such as a log (multi-Paxos).

Paxos ensures both safety and liveness, and it supports

changes in cluster membership. Its correctness has been

proven, and it is efficient in the normal case.

Unfortunately, Paxos has two significant drawbacks.

The first drawback is that Paxos is exceptionally difficult

to understand. The full explanation [13] is notoriously

opaque; few people succeed in understanding it, and only

with great effort. As a result, there have been several

attempts to explain Paxos in simpler terms [14, 18, 19].

These explanations focus on the single-decree subset, yet

they are still challenging. In an informal survey of atten-

dees at NSDI 2012, we found few people who were com-

fortable with Paxos, even among seasoned researchers.

We struggled with Paxos ourselves; we were not able to

understand the complete protocol until after reading sev-

eral simplified explanations and designing our own alter-

native protocol, a process that took almost a year.

We hypothesize that Paxos’ opaqueness derives from

its choice of the single-decree subset as its foundation.

Single-decree Paxos is dense and subtle: it is divided into

two stages that do not have simple intuitive explanations

and cannot be understood independently. Because of this,

it is difficult to develop intuitions about why the single-

decree protocol works. The composition rules for multi-

Paxos add significant additional complexity and subtlety.

We believe that the overall problem of reaching consensus

on multiple decisions (i.e., a log instead of a single entry)

can be decomposed in other ways that are more direct and

obvious.

The second problem with Paxos is that it does not pro-

vide a good foundation for building practical implemen-

tations. One reason is that there is no widely agreed-

upon algorithm for multi-Paxos. Lamport’s descriptions

are mostly about single-decree Paxos; he sketched some

possible approaches to multi-Paxos, but many details are

missing. There have been several attempts to flesh out

and optimize Paxos, such as [24], [34], and [11], but these

2

differ from each other and from Lamport’s sketches. Sys-

tems such as Chubby [3] have implemented Paxos-like

algorithms, but in most cases their details have not been

published.

Furthermore, the Paxos architecture is a poor one for

building practical systems; this is another consequence of

the single-decree decomposition. For example, there is

little benefit to choosing a collection of log entries inde-

pendently and then melding them into a sequential log;

this just adds complexity. It is simpler and more efficient

to design a system around a log, where new entries are ap-

pended sequentially in a constrained order. Another prob-

lem is that Paxos uses a symmetric peer-to-peer approach

at its core (though it eventually suggests a weak form of

leadership as a performance optimization). This makes

sense in a simplified world where only one decision will

be made, but few practical systems use this approach. If a

series of decisions must be made, it is simpler and faster

to first elect a leader, then have the leader coordinate the

decisions.

As a result, practical systems bear little resemblance

to Paxos. Each implementation begins with Paxos, dis-

covers the difficulties in implementing it, and then devel-

ops a significantly different architecture. This is time-

consuming and error-prone. The difficulties of under-

standing Paxos exacerbate the problem: system builders

must modify the Paxos algorithm in major ways, yet

Paxos does not provide them with the intuitions needed

for this. Paxos’ formulation may be a good one for prov-

ing theorems about its correctness, but real implementa-

tions are so different from Paxos that the proofs have little

value. The following comment from the Chubby imple-

mentors is typical:

There are significant gaps between the description of

the Paxos algorithm and the needs of a real-world

system.... the final system will be based on an un-

proven protocol [3].

Because of these problems, we have concluded that

Paxos does not provide a good foundation either for sys-

tem building or for education. Given the importance of

consensus in large-scale software systems, we decided to

see if we could design an alternative consensus algorithm

with better properties than Paxos. Raft is the result of that

experiment.

4 Designing for understandability
We had several goals in designing Raft: it must provide

a complete and appropriate foundation for system build-

ing, so that it significantly reduces the amount of design

work required of developers; it must be safe under all con-

ditions and available under typical operating conditions;

and it must be efficient for common operations. But our

most important goal—and most difficult challenge—was

understandability. It must be possible for a large audi-

ence to understand the algorithm comfortably. In addi-

tion, it must be possible to develop intuitions about the al-

gorithm, so that system builders can make the extensions

that are inevitable in real-world implementations.

There were numerous points in the design of Raft

where we had to choose among alternative approaches.

In these situations we evaluated the alternatives based on

understandability: how hard is it to explain each alterna-

tive (for example, how complex is its state space, and does

it have subtle implications?), and how easy will it be for

a reader to completely understand the approach and its

implications? Given a choice between an alternative that

was concise but subtle and one that was longer (either in

lines of code or explanation) but more obvious, we chose

the more obvious approach. Fortunately, in most cases the

more obvious approach was also more concise.

We recognize that there is a high degree of subjectiv-

ity in such analysis; nonetheless, we used two techniques

that are generally applicable. The first technique is the

well-known approach of problem decomposition: wher-

ever possible, we divided problems into separate pieces

that could be solved, explained, and understood relatively

independently. For example, in Raft we separated leader

election, log replication, safety, and membership changes.

Our second approach was to simplify the state space

by reducing the number of states to consider, making the

system more coherent and eliminating nondeterminism

where possible. For example, logs are not allowed to have

holes, and Raft limits the ways in which logs can become

inconsistent with each other. This approach conflicts with

advice given by Lampson: “More nondeterminism is bet-

ter, because it allows more implementations [18].” In our

situation we needed only a single implementation, but it

needed to be understandable; we found that reducing non-

determinism usually improved understandability. We sus-

pect that trading off implementation flexibility for under-

standability makes sense for most system designs.

5 The Raft consensus algorithm
Raft uses a collection of servers communicating with

remote procedure calls (RPCs) to implement a replicated

log of the form described in Section 2. Figure 2 sum-

marizes the algorithm in condensed form for reference,

and Figure 3 lists key properties of the algorithm; the el-

ements of these figures are discussed piecewise over the

rest of this section.

Raft implements consensus by first electing a distin-

guished leader, then giving the leader complete responsi-

bility for managing the replicated log. The leader accepts

log entries from clients, replicates them on other servers,

and tells servers when it is safe to apply log entries to

their state machines. Having a leader simplifies the man-

agement of the replicated log. For example, the leader can

decide where to place new entries in the log without con-

sulting other servers, and data flows in a simple fashion

from the leader to other servers. A leader can fail or be-

3

Invoked by candidates to gather votes (§5.2).

Arguments:

term candidate's term

candidateId candidate requesting vote

lastLogIndex index of candidate's last log entry (§5.4)

lastLogTerm term of candidate's last log entry (§5.4)

Results:

term currentTerm, for candidate to update itself

voteGranted true means candidate received vote

Receiver implementation:

1. Reply false if term < currentTerm (§5.1)

2. If votedFor is null or candidateId, and candidate's log is at

least as up-to-date as local log, grant vote (§5.2, §5.4)

RequestVote RPC

Invoked by leader to replicate log entries (§5.3); also used as

heartbeat (§5.2).

Arguments:

term leader's term

leaderId so follower can redirect clients

prevLogIndex index of log entry immediately preceding

new ones

prevLogTerm term of prevLogIndex entry

entries[] log entries to store (empty for heartbeat;

may send more than one for efficiency)

leaderCommit leader’s commitIndex

Results:

term currentTerm, for leader to update itself

success true if follower contained entry matching

prevLogIndex and prevLogTerm

Receiver implementation:

1. Reply false if term < currentTerm (§5.1)

2. Reply false if log doesn’t contain an entry at prevLogIndex

whose term matches prevLogTerm (§5.3)

3. If existing entries conflict with new entries, delete all

existing entries starting with first conflicting entry (§5.3)

4. Append any new entries not already in the log

5. If leaderCommit > commitIndex, set commitIndex =

min(leaderCommit, last log index)

AppendEntries RPC

Persistent state on all servers:

(Updated on stable storage before responding to RPCs)

currentTerm latest term server has seen (initialized to 0

on first boot, increases monotonically)

votedFor candidateId that received vote in current

term (or null if none)

log[] log entries; each entry contains command

for state machine, and term when entry

was received by leader (first index is 1)

Volatile state on all servers:

commitIndex index of highest log entry known to be

committed (initialized to 0, increases

monotonically)

lastApplied index of highest log entry applied to state

machine (initialized to 0, increases

monotonically)

Volatile state on leaders:

(Reinitialized after election)

nextIndex[] for each server, index of the next log entry

to send to that server (initialized to leader

last log index +1)

matchIndex[] for each server, index of highest log entry

known to be replicated on server

(initialized to 0, increases monotonically)

State

All Servers:

• If commitIndex > lastApplied: increment lastApplied, apply

log[lastApplied] to state machine (§5.3)

• If RPC request or response contains term T > currentTerm:

set currentTerm = T, convert to follower (§5.1)

Followers (§5.2):

• Respond to RPCs from candidates and leaders

• If election timeout elapses without receiving AppendEntries

RPC from current leader or granting vote to candidate:

convert to candidate

Candidates (§5.2):

• On conversion to candidate, start election:

• Increment currentTerm

• Vote for self

• Reset election timeout

• Send RequestVote RPCs to all other servers

• If votes received from majority of servers: become leader

• If AppendEntries RPC received from new leader: convert to

follower

• If election timeout elapses: start new election

Leaders:

• Upon election: send initial empty AppendEntries RPCs

(heartbeat) to each server; repeat during idle periods to

prevent election timeouts (§5.2)

• If command received from client: append entry to local log,

respond after entry applied to state machine (§5.3)

• If last log index ≥ nextIndex for a follower: send

AppendEntries RPC with log entries starting at nextIndex

• If successful: update nextIndex and matchIndex for

follower (§5.3)

• If AppendEntries fails because of log inconsistency:

decrement nextIndex and retry (§5.3)

• If there exists an N such that N > commitIndex, a majority

of matchIndex[i] ≥ N, and log[N].term == currentTerm:

set commitIndex = N (§5.2, §5.4).

Rules for Servers

Figure 2: A condensed summary of the Raft consensus algorithm (excluding membership changes and log compaction). The

server behavior in the upper-left box is described as a set of rules that trigger independently and repeatedly. Section numbers such

as §5.2 indicate where particular features are discussed. A formal specification [31] describes the algorithm more precisely.

come disconnected from the other servers, in which case

a new leader is elected.

Given the leader approach, Raft decomposes the con-

sensus problem into three relatively independent subprob-

lems, which are discussed in the subsections that follow:

• Leader election: a new leader must be chosen when

an existing leader fails (Section 5.2).

• Log replication: the leader must accept log entries

4

Election Safety: at most one leader can be elected in a

given term. §5.2

Leader Append-Only: a leader never overwrites or deletes

entries in its log; it only appends new entries. §5.3

Log Matching: if two logs contain an entry with the same

index and term, then the logs are identical in all entries

up through the given index. §5.3

Leader Completeness: if a log entry is committed in a

given term, then that entry will be present in the logs of

the leaders for all higher-numbered terms. §5.4

State Machine Safety: if a server has applied a log entry

at a given index to its state machine, no other server

will ever apply a different log entry for the same index.

§5.4.3

Figure 3: Raft guarantees that each of these properties is true

at all times. The section numbers indicate where each prop-

erty is discussed.

from clients and replicate them across the cluster,

forcing the other logs to agree with its own (Sec-

tion 5.3).

• Safety: the key safety property for Raft is the State

Machine Safety Property in Figure 3: if any server

has applied a particular log entry to its state ma-

chine, then no other server may apply a different

command for the same log index. Section 5.4 de-

scribes how Raft ensures this property; the solution

involves slight extensions to the election and replica-

tion mechanisms described in Sections 5.2 and 5.3.

After presenting the consensus algorithm, this section dis-

cusses the issue of availability and the role of timing in the

system.

5.1 Raft basics

A Raft cluster contains several servers (five is a typical

number, which allows the system to tolerate two failures).

At any given time each server is in one of three states:

leader, follower, or candidate. In normal operation there

is exactly one leader and all of the other servers are fol-

lowers. Followers are passive: they issue no RPCs on

their own but simply respond to RPCs from leaders and

candidates. The leader handles all client requests (if a

client contacts a follower, the follower redirects it to the

leader). The third state, candidate, is used to elect a new

leader as described in Section 5.2. Figure 4 shows the

states and their transitions; the transitions are discussed in

the subsections below.

Raft divides time into terms of arbitrary length, as

shown in Figure 5. Terms are numbered with consecu-

tive integers. Each term begins with an election, in which

one or more candidates attempt to become leader as de-

scribed in Section 5.2. If a candidate wins the election,

then it serves as leader for the rest of the term. In some

situations an election will result in a split vote. In this case

the term will end with no leader; a new term (with a new

Figure 4: Server states. Followers only respond to requests

from other servers. If a follower receives no communication,

it becomes a candidate and initiates an election. A candidate

that receives votes from a majority of the full cluster becomes

the new leader. Leaders typically operate until they fail.

election) will begin shortly. Raft ensures that there is at

most one leader in a given term.

Different servers may observe the transitions between

terms at different times, and in some situations a server

may not observe an election or even entire terms. Terms

act as a logical clock [12] in Raft, and they allow Raft

servers to detect obsolete information such as stale lead-

ers. Each server stores a current term number, which in-

creases monotonically over time. Current terms are ex-

changed whenever servers communicate; if one server’s

current term is smaller than the other, then it updates its

current term to the larger value. If a candidate or leader

discovers that its term is out of date, it immediately reverts

to follower state (it “steps down”). If a server receives a

request with a stale term number, it rejects the request.

Raft uses only two types of RPCs between servers for

the basic consensus algorithm. RequestVote RPCs are ini-

tiated by candidates during elections (Section 5.2), and

AppendEntries RPCs are initiated by leaders to repli-

cate log entries and to provide a form of heartbeat (Sec-

tion 5.3). A third RPC is introduced in Section 7 for trans-

ferring snapshots between servers.

5.2 Leader election

Raft uses a heartbeat mechanism to trigger leader elec-

tion. When servers start up, they begin as followers. A

server remains in follower state as long as it receives valid

RPCs from a leader or candidate. Leaders send periodic

heartbeats (AppendEntries RPCs that carry no log entries)

to all followers in order to maintain their authority. If a

follower receives no communication over a period of time

called the election timeout, then it assumes there is no vi-

able leader and begins an election to choose a new leader.

To begin an election, a follower increments its cur-

rent term and transitions to candidate state. It then issues

RequestVote RPCs in parallel to each of the other servers

in the cluster. If the candidate receives no response for an

RPC, it reissues the RPC repeatedly until a response ar-

rives or the election concludes. A candidate continues in

this state until one of three things happens: (a) it wins the

election, (b) another server establishes itself as leader, or

(c) a period of time goes by with no winner. These out-

comes are discussed separately in the paragraphs below.

5

Figure 5: Time is divided into terms, and each term begins

with an election. After a successful election, a single leader

manages the cluster until the end of the term. Some elections

fail, in which case the term ends without choosing a leader.

The exact transitions may be observed at different times on

different servers.

A candidate wins an election if it receives votes from

a majority of the servers in the full cluster for the same

term. Each server will vote for at most one candidate in a

given term, on a first-come-first-served basis (note: Sec-

tion 5.4 adds an additional restriction on votes). The ma-

jority rule ensures that at most one candidate can win the

election for a particular term (the Election Safety Prop-

erty in Figure 3). Once a candidate wins an election, it

becomes leader. It then sends heartbeat messages to ev-

ery other server to establish its authority and prevent new

elections.

While waiting for votes, a candidate may receive an

AppendEntries RPC from another server claiming to be

leader. If the leader’s term (included in its RPC) is at least

as large as the candidate’s current term, then the candi-

date recognizes the leader as legitimate and steps down,

meaning that it returns to follower state. If the term in

the RPC is older than the candidate’s current term, then

the candidate rejects the RPC and continues in candidate

state.

The third possible outcome is that a candidate neither

wins nor loses the election: if many followers become

candidates at the same time, votes could be split so that

no candidate obtains a majority. When this happens, each

candidate will start a new election by incrementing its

term and initiating another round of RequestVote RPCs.

However, without extra measures this process could re-

peat indefinitely without any candidate ever receiving a

majority of the votes.

Raft uses randomized election timeouts to ensure that

split votes are rare and that they are resolved quickly.

To prevent split votes in the first place, election time-

outs are chosen randomly from a fixed interval (currently

150-300ms in our implementation). This spreads out the

servers so that in most cases only a single server will time

out; it wins the election and sends heartbeats before any

other servers time out. The same mechanism is used to

handle split votes. Each candidate restarts its (random-

ized) election timeout at the start of an election, and it

waits for that timeout to elapse before starting the next

election; this reduces the likelihood of another split vote

in the new election. Section 9 shows that this approach

elects a leader rapidly.

Figure 6: Logs are composed of entries, which are numbered

sequentially. Each entry contains the term in which it was

created (the number in each box) and a command for the state

machine. An entry is considered committed if it is safe for

that entry to be applied to state machines.

Elections are an example of how understandability

guided our choice between design alternatives. Initially

we planned to use a ranking system: each candidate was

assigned a unique rank, which was used to select between

competing candidates. If a candidate discovered another

candidate with higher rank, it would return to follower

state so that the higher ranking candidate could more eas-

ily win the next election. We found that this approach cre-

ated subtle issues around availability, particularly when

combined with the safety issues discussed in Section 5.4.

We made adjustments to the algorithm several times, but

after each adjustment new corner cases appeared. Even-

tually we concluded that the randomized retry approach is

more obvious and understandable.

5.3 Log replication

Once a leader has been elected, it begins servicing

client requests. Each client request contains a command

to be executed by the replicated state machines. The

leader appends the command to its log as a new entry, then

issues AppendEntries RPCs in parallel to each of the other

servers to replicate the entry. When the entry has been

safely replicated (as described below), the leader applies

the entry to its state machine and returns the result of that

execution to the client. If followers crash or run slowly,

or if network packets are lost, the leader retries Append-

Entries RPCs indefinitely (even after it has responded to

the client) until all followers eventually store all log en-

tries.

Logs are organized as shown in Figure 6. Each log en-

try stores a state machine command along with the term

number when the entry was received by the leader. The

term numbers in log entries are used to detect inconsis-

tencies between logs and to ensure some of the properties

in Figure 3. Each log entry also has an integer index iden-

tifying its position in the log.

The leader decides when it is safe to apply a log en-

6

try to the state machines; such an entry is called commit-

ted. Raft guarantees that committed entries are durable

and will eventually be executed by all of the replicated

state machines. In the simple case of a leader replicat-

ing entries from its current term, a log entry is committed

once it is stored on a majority of servers (e.g., entries 1-7

in Figure 6). Section 5.4 will extend this rule to handle

other situations. The leader keeps track of the highest in-

dex it knows to be committed, and it includes that index

in future AppendEntries RPCs (including heartbeats) so

that the other servers eventually find out. Once a follower

learns that a log entry is committed, it applies the entry to

its local state machine (in log order).

We designed the Raft log mechanism to maintain a high

level of coherency between the logs on different servers.

Not only does this simplify the system’s behavior and

make it more predictable, but it is an important component

of ensuring safety. Raft maintains the following proper-

ties, which together constitute the Log Matching Property

in Figure 3:

• If two entries in different logs have the same index

and term, then they store the same command.

• If two entries in different logs have the same index

and term, then the logs will be identical in all pre-

ceding entries.

The first property follows from the fact that a leader

creates at most one entry with a given log index in a given

term, and log entries never change their position in the

log.

The second property is guaranteed by a simple consis-

tency check performed by AppendEntries. When send-

ing an AppendEntries RPC, the leader includes the index

and term of the entry in its log that immediately precedes

the new entries. If the follower does not find an entry in

its log with the same index and term, then it refuses the

new entries. The consistency check acts as an induction

step: the initial empty state of the logs satisfies the Log

Matching Property, and the consistency check preserves

the Log Matching Property whenever logs are extended.

As a result, whenever AppendEntries returns successfully,

the leader knows that the follower’s log is identical to its

own log up through the new entries.

During normal operation, the logs of the leader and fol-

lowers stay consistent, so the AppendEntries consistency

check never fails. However, leader crashes can leave the

logs inconsistent (the old leader may not have fully repli-

cated all of the entries in its log). These inconsisten-

cies can compound over a series of leader and follower

crashes. Figure 7 illustrates the ways in which followers’

logs may differ from that of a new leader. A follower may

be missing entries that are present on the leader (a-b), it

may have extra entries that are not present on the leader

(c-d), or both (e-f). Missing and extraneous entries in a

log may span multiple terms.

Figure 7: When the leader at the top comes to power, it is

possible that any of scenarios (a-f) could occur in follower

logs. Each box represents one log entry; the number in the

box is its term. A follower may be missing entries (a-b), may

have extra uncommitted entries (c-d), or both (e-f). For exam-

ple, scenario (f) could occur if that server was the leader for

term 2, added several entries to its log, then crashed before

committing any of them; it restarted quickly, became leader

for term 3, and added a few more entries to its log; before any

of the entries in either term 2 or term 3 were committed, the

server crashed again and remained down for several terms.

In Raft, the leader handles inconsistencies by forcing

the followers’ logs to duplicate its own. This means that

conflicting entries in follower logs will be overwritten

with entries from the leader’s log. Section 5.4 will show

that this is safe.

To bring a follower’s log into consistency with its own,

the leader must find the latest log entry where the two logs

agree, delete any entries in the follower’s log after that

point, and send the follower all of the leader’s entries after

that point. All of these actions happen in response to the

consistency check performed by AppendEntries RPCs.

The leader maintains a nextIndex for each follower, which

is the index of the next log entry the leader will send to

that follower. When a leader first comes to power it ini-

tializes all nextIndex values to the index just after the last

one in its log (11 in Figure 7). If a follower’s log is incon-

sistent with the leader’s, the AppendEntries consistency

check will fail in the next AppendEntries RPC. After a

rejection, the leader decrements nextIndex and retries the

AppendEntries RPC. Eventually nextIndex will reach a

point where the leader and follower logs match. When

this happens, AppendEntries will succeed; it will remove

any conflicting entries in the follower’s log and append

entries from the leader’s log (if any). Once AppendEntries

succeeds, the follower’s log is consistent with the leader’s,

and it will remain that way for the rest of the term.

If desired, the protocol can be optimized to reduce the

number of rejected AppendEntries RPCs. For example,

when rejecting an AppendEntries request, the follower

can include information about the term that contains the

conflicting entry (term identifier and indexes of the first

and last log entries for this term). With this informa-

tion, the leader can decrement nextIndex to bypass all of

7

the conflicting entries in that term; one AppendEntries

RPC will be required for each term with conflicting en-

tries, rather than one RPC per entry. In practice, we doubt

this optimization is necessary, since failures happen infre-

quently and it is unlikely that there will be many incon-

sistent entries.

With this mechanism, a leader does not need to take any

special actions to restore log consistency when it comes to

power. It just begins normal operation and the logs auto-

matically converge in response to failures of the Append-

Entries consistency check. A leader never overwrites or

deletes entries in its log (the Leader Append-Only Prop-

erty in Figure 3).

This log replication mechanism exhibits the desirable

consensus properties described in Section 2: Raft can ac-

cept, replicate, and apply new log entries as long as a ma-

jority of the servers are up; in the normal case a new entry

can be replicated with a single round of RPCs to a ma-

jority of the cluster; and a single slow follower will not

impact performance.

5.4 Safety

The previous sections described how Raft elects lead-

ers and replicates log entries. However, the mechanisms

described so far are not quite sufficient to ensure that each

state machine executes exactly the same commands in the

same order. For example, a follower might be unavail-

able while the leader commits several log entries, then it

could be elected leader and overwrite these entries with

new ones; as a result, different state machines might exe-

cute different command sequences.

This section completes the Raft algorithm with two ex-

tensions: it restricts which servers may be elected leader,

and it restricts which entries are considered committed.

Together, these restrictions ensure that the leader for any

given term contains all of the entries committed in pre-

vious terms (the Leader Completeness Property from Fig-

ure 3). We then show how the Leader Completeness Prop-

erty leads to correct behavior of the replicated state ma-

chine.

In any leader-based consensus algorithm, the leader

must eventually store all of the committed log entries. In

some consensus algorithms, such as Viewstamped Repli-

cation [20], a leader can be elected even if it doesn’t

initially contain all of the committed entries. These al-

gorithms contain additional mechanisms to identify the

missing entries and transmit them to the new leader, ei-

ther during the election process or shortly afterwards. Un-

fortunately, this results in considerable additional mecha-

nism and complexity. Raft uses a simpler approach where

it guarantees that all the committed entries from previous

terms are present on each new leader from the moment

of its election, without the need to transfer those entries

to the leader. This means that log entries only flow in

one direction, from leaders to followers, and leaders never

Figure 8: Scenarios for commitment. In each scenario S1

is leader and has just finished replicating a log entry to S3.

In (a) the entry is from the leader’s current term (2), so it is

now committed. In (b) the leader for term 4 is replicating an

entry from term 2; index 2 is not safely committed because

S5 could become leader of term 5 (with votes from S2, S3,

and S4) and overwrite the entry. Once the leader for term 4

has replicated an entry from term 4 in scenario (c), S5 cannot

win an election so both indexes 2 and 3 are now committed.

overwrite existing entries in their logs.

5.4.1 Election restriction

Raft uses the voting process to prevent a candidate from

winning an election unless its log contains all committed

entries. A candidate must contact a majority of the cluster

in order to be elected, which means that every committed

entry must be present in at least one of those servers. If

the candidate’s log is at least as up-to-date as any other log

in that majority (where “up-to-date” is defined precisely

below), then it will hold all the committed entries. The

RequestVote RPC implements this restriction: the RPC

includes information about the candidate’s log, and the

voter denies its vote if its own log is more up-to-date than

that of the candidate.

Raft determines which of two logs is more up-to-date

by comparing the index and term of the last entries in the

logs. If the logs have last entries with different terms, then

the log with the later term is more up-to-date. If the logs

end with the same term, then whichever log is longer is

more up-to-date.

5.4.2 Restriction on commitment

We now explore whether the election restriction is suf-

ficient to ensure the Leader Completeness Property. Con-

sider the situations where a leader decides that a log entry

is committed. There are two such situations, which are di-

agrammed in Figure 8. The most common case is where

the leader replicates an entry from its current term (Fig-

ure 8(a)). In this case the entry is committed as soon as

the leader confirms that it is stored on a majority of the

full cluster. At this point only servers storing the entry

can be elected as leader.

The second case for commitment is when a leader is

committing an entry from an earlier term. This situation

is illustrated in Figure 8(b). The leader for term 2 created

an entry at log index 2 but replicated it only on S1 and S2

before crashing. S5 was elected leader for term 3 but was

unaware of this entry (it received votes from itself, S3,

8

Figure 9: Suppose that S1 (leader for term T) commits a new

log entry from its term, but that entry is not stored by the

leader for a later term U (S5). Then there must be at least one

server (S3) that accepted the log entry and also voted for S5.

and S4). Thus it created its own entry in log slot 2; then

it crashed before replicating that entry. S1 was elected

leader for term 4 (with votes from itself, S2 and S3). It

then replicated its log index 2 on S3. In this situation, S1

cannot consider log index 2 committed even though it is

stored on majority of the servers: S5 could still be elected

leader (since its log is more up-to-date than the logs of S2,

S3, and S4) and propagate its own value for index 2.

Raft handles this situation with an additional restric-

tion on committing log entries. A new leader may not

conclude that any log entries are committed until it has

committed an entry from its current term. Once this hap-

pens, all of the preceding entries in its log are also com-

mitted. Figure 8(c) shows how this preserves the Leader

Completeness Property: once the leader has replicated an

entry from term 4 on a majority of the cluster, the election

rules prevent S5 from being elected leader.

5.4.3 Safety argument

Given the complete rules for commitment and election,

we can now argue more precisely that the Leader Com-

pleteness Property holds (this argument is based on our

safety proof; see Section 9.2). We assume that the Leader

Completeness Property does not hold, then we prove a

contradiction. Suppose the leader for term T (leaderT)

commits a log entry from its term, but that log entry is

not stored by the leader of some future term. Consider

the smallest term U > T whose leader (leaderU) does not

store the entry.

1. The committed entry must have been absent from

leaderU’s log at the time of its election (leaders never

delete or overwrite entries).

2. leaderT replicated the entry on a majority of the clus-

ter, and leaderU received votes from a majority of

the cluster. Thus, at least one server (“the voter”)

both accepted the entry from leaderT and voted for

leaderU, as shown in Figure 9. The voter is key to

reaching a contradiction.

3. The voter must have accepted the committed entry

from leaderT before voting for leaderU; otherwise it

would have rejected the AppendEntries request from

leaderT (its current term would have been higher than

T).

4. The voter still stored the entry when it voted for

leaderU, since every intervening leader contained the

entry (by assumption), leaders never remove entries,

and followers only remove entries if they conflict

with the leader.

5. The voter granted its vote to leaderU, so leaderU’s

log must have been as up-to-date as the voter’s. This

leads to one of two contradictions.

6. First, if the voter and leaderU shared the same last

log term, then leaderU’s log must have been at least

as long as the voter’s, so its log contained every entry

in the voter’s log. This is a contradiction, since the

voter contained the committed entry and leaderU was

assumed not to.

7. Otherwise, leaderU’s last log term must have been

larger than the voter’s. Moreover, it was larger than

T, since the voter’s last log term was at least T (it con-

tains the committed entry from term T). The earlier

leader that created leaderU’s last log entry must have

contained the committed entry in its log (by assump-

tion). Then, by the Log Matching Property, leaderU’s

log must also contain the committed entry, which is

a contradiction.

8. This completes the contradiction. Thus, the leaders

of all terms greater than T must contain all entries

from term T that are committed in term T.

9. The Log Matching Property guarantees that future

leaders will also contain entries that are committed

indirectly, such as index 2 in Figure 8(c).

Given the Leader Completeness Property, we can prove

the State Machine Safety Property from Figure 3, which

states that if a server has applied a log entry at a given

index to its state machine, no other server will ever ap-

ply a different log entry for the same index. At the time

a server applies a log entry to its state machine, its log

must be identical to the leader’s log up through that entry

and the leader must have decided the entry is committed.

Now consider the lowest term in which any server applies

a given log index; the Log Completeness Property guar-

antees that the leaders for all higher terms will store that

same log entry, so servers that apply the index in later

terms will apply the same value. Thus, the State Machine

Safety Property holds.

Finally, Raft requires servers to apply entries in log in-

dex order. Combined with the State Machine Safety Prop-

erty, this means that all servers will apply exactly the same

set of log entries to their state machines, in the same order.

5.5 Follower and candidate crashes

Until this point we have focused on leader failures. Fol-

lower and candidate crashes are much simpler to han-

dle than leader crashes, and they are both handled in the

same way. If a follower or candidate crashes, then fu-

ture RequestVote and AppendEntries RPCs sent to it will

fail. Raft handles these failures by retrying indefinitely;

the server will eventually restart (as a follower) and the

9

RPC will complete successfully. If a server crashes af-

ter completing an RPC but before responding, then it will

receive the same RPC again after it restarts. Fortunately,

Raft RPCs are idempotent so this causes no harm. For

example, if a follower receives an AppendEntries request

that includes log entries already present in its log, it ig-

nores those entries in the new request.

5.6 Timing and availability

One of our requirements for Raft is that safety must not

depend on timing: the system must not produce incorrect

results just because some event happens more quickly or

slowly than expected. However, availability (the ability

of the system to respond to clients in a timely manner)

is a different story: it must inevitably depend on timing.

For example, if message exchanges take longer than the

typical time between server crashes, candidates will not

stay up long enough to win an election; without a steady

leader, Raft cannot make progress.

Leader election is the aspect of Raft where timing is

most critical. Raft will be able to elect and maintain a

steady leader as long as the system satisfies the following

timing requirement:

broadcastT ime ≪ electionT imeout≪ MTBF

In this inequality broadcastTime is the average time it

takes a server to send RPCs in parallel to every server

in the cluster and receive their responses; electionTime-

out is the election timeout described in Section 5.2; and

MTBF is the average time between failures for a single

server. The broadcast time must be an order of magnitude

less than the election timeout so that leaders can reliably

send the heartbeat messages required to keep followers

from starting elections; given the randomized approach

used for election timeouts, this inequality also makes split

votes unlikely. The election timeout must be a few orders

of magnitude less than MTBF so that the system makes

steady progress. When the leader crashes, the system will

be unavailable for roughly the election timeout; we would

like this to represent only a small fraction of overall time.

The broadcast time and MTBF are properties of the un-

derlying system, while the election timeout is something

we must choose. Raft’s RPCs typically require the recip-

ient to persist information to stable storage, so the broad-

cast time may range from 0.5ms to 20ms, depending on

storage technology. As a result, the election timeout is

likely to be somewhere between 10ms and 500ms. Typi-

cal server MTBFs are several months or more, which eas-

ily satisfies the timing requirement.

Raft will continue to function correctly even if the tim-

ing requirement is occasionally violated. For example, the

system can tolerate short-lived networking glitches that

make the broadcast time larger than the election timeout.

If the timing requirement is violated over a significant pe-

riod of time, then the cluster may become unavailable.

Figure 10: Switching directly from one configuration to an-

other is unsafe because different servers will switch at dif-

ferent times. In this example, the cluster grows from three

servers to five. Unfortunately, there is a point in time where

two different leaders can be elected for the same term, one

with a majority of the old configuration (Cold) and another

with a majority of the new configuration (Cnew).

Once the timing requirement is restored, the system will

become available again.

6 Cluster membership changes

Up until now we have assumed that the cluster config-

uration (the set of servers participating in the consensus

algorithm) is fixed. In practice, it will occasionally be

necessary to change the configuration, for example to re-

place servers when they fail or to change the degree of

replication. Although this can be done by taking the en-

tire cluster off-line, updating configuration files, and then

restarting the cluster, this will leave the cluster unavailable

during the changeover. In addition, if there are any man-

ual steps, they risk operator error. In order to avoid these

issues, we decided to automate configuration changes and

incorporate them into the Raft consensus algorithm.

The biggest challenge for configuration changes is to

ensure safety: there must be no point during the transition

where it is possible for two leaders to be elected for the

same term. Unfortunately, any approach where servers

switch directly from the old configuration to the new con-

figuration is unsafe. It isn’t possible to atomically switch

all of the servers at once, so there will be a period of time

when some of the servers are using the old configuration

while others have switched to the new configuration. As

shown in Figure 10, this can result in two independent

majorities.

In order to ensure safety, configuration changes must

use a two-phase approach. There are a variety of ways to

implement the two phases. For example, some systems

(e.g. [20]) use the first phase to disable the old configura-

tion so it cannot process client requests; then the second

phase enables the new configuration. In Raft the cluster

first switches to a transitional configuration we call joint

consensus; once the joint consensus has been committed,

the system then transitions to the new configuration. The

joint consensus combines both the old and new configu-

rations:

10

Figure 11: Timeline for a configuration change. Dashed

lines show configuration entries that have been created but not

committed, and solid lines show the latest committed config-

uration entry. The leader first creates the Cold,new configura-

tion entry in its log and commits it to Cold,new (a majority of

Cold and a majority of Cnew). Then it creates the Cnew entry

and commits it to a majority of Cnew. There is no point in

time in which Cold and Cnew can both make decisions inde-

pendently.

• Log entries are replicated to all servers in both con-

figurations.

• Any server from either configuration may serve as

leader.

• Agreement (for elections and entry commitment) re-

quires majorities from both the old and new configu-

rations.

As will be shown below, the joint consensus allows indi-

vidual servers to transition between configurations at dif-

ferent times without compromising safety. Furthermore,

joint consensus allows the cluster to continue servicing

client requests throughout the configuration change.

Cluster configurations are stored and communicated

using special entries in the replicated log; Figure 11 illus-

trates the configuration change process. When the leader

receives a request to change the configuration from Cold

to Cnew , it stores the configuration for joint consensus

(Cold,new in the figure) as a log entry and replicates that

entry using the mechanisms described previously. Once

a given server adds the new configuration entry to its log,

it uses that configuration for all future decisions (a server

always uses the latest configuration in its log, regardless

of whether the entry is committed). This means that the

leader will use the rules ofCold,new to determine when the

log entry for Cold,new is committed. If the leader crashes,

a new leader may be chosen under eitherCold orCold,new,

depending on whether the winning candidate has received

Cold,new. In any case, Cnew cannot make unilateral deci-

sions during this period.

Once Cold,new has been committed, neither Cold nor

Cnew can make decisions without approval of the other,

and the Leader Completeness Property ensures that only

servers with the Cold,new log entry can be elected as

leader. It is now safe for the leader to create a log en-

try describing Cnew and replicate it to the cluster. Again,

this configuration will take effect on each server as soon

as it is seen. When the new configuration has been com-

mitted under the rules of Cnew , the old configuration is

irrelevant and servers not in the new configuration can be

shut down. As shown in Figure 11, there is no time when

Cold and Cnew can both make unilateral decisions; this

guarantees safety.

There are three more issues to address for reconfigu-

ration. First, if the leader is part of Cold but not part of

Cnew , it must eventually step down. In Raft the leader

steps down immediately after committing a configuration

entry that does not include itself. This means that there

will be a period of time (while it is committing Cnew)

where the leader is managing a cluster that does not in-

clude itself; it replicates log entries but does not count

itself in majorities. The leader should not step down ear-

lier, because members not in Cnew could still be elected,

resulting in unnecessary elections.

The second issue is that new servers may not initially

store any log entries. If they are added to the cluster in

this state, it could take quite a while for them to catch

up, during which time it might not be possible to com-

mit new log entries. In order to avoid availability gaps,

Raft introduces an additional phase before the configura-

tion change, in which the new servers join the cluster as

non-voting members (the leader will replicate log entries

to them, but they are not considered for majorities). Once

the new servers have caught up with the rest of the cluster,

the reconfiguration can proceed as described above.

The third issue is that servers that are removed from

the cluster may still disrupt the cluster’s availability. If

these servers do not know that they have been removed,

they can still start new elections. These elections cannot

succeed, but they may cause servers in the new cluster to

adopt larger term numbers, in turn causing valid cluster

leaders to step down. To solve this, candidates send their

latest configuration term and index in RequestVote RPC

requests, and any recipient with a more up-to-date config-

uration (with a larger term or the same term but a larger

index) would completely ignore such requests.

7 Log compaction
In a practical system, the Raft log cannot grow without

bound. As clients issue requests, the log grows longer, oc-

cupying more space and taking more time to replay. This

will eventually cause availability problems without some

mechanism to discard obsolete information that has accu-

mulated in the log.

There are two basic approaches to compaction: log

cleaning and snapshotting. Log cleaning [30] inspects log

entries to determine whether they are live—whether they

contribute to the current system state. Live entries are

rewritten to the head of the log, then large consecutive re-

gions of the log are freed. This process is incremental and

efficient, but choosing which regions of the log to clean

and determining which entries are live can be complex.

The second approach, snapshotting, operates on the

current system state rather than on the log. In snapshot-

11

Figure 12: A server replaces the committed entries in its log

(indexes 1 through 5) with a new snapshot, which stores just

the current state (variables x and y in this example). The

snapshot’s last included index and term position the snapshot

in the log preceding entry 6.

ting, the entire current system state is written to a snap-

shot on stable storage, then the entire log up to that point

is discarded. Compared to log cleaning, it is not incre-

mental and less efficient (even information that has not

changed since the last snapshot is rewritten). However,

it is much simpler (for example, state machines need not

track which log entries are live). Snapshotting is used in

Chubby and ZooKeeper and is assumed for the remainder

of this section.

Figure 12 shows the basic idea of snapshotting. Each

server takes snapshots independently, covering just the

committed entries in its log. Most of the work consists

of the state machine writing its current state to the snap-

shot. Raft also includes a small amount of metadata in

the snapshot: the last included index is the index of the

last entry in the log that the snapshot replaces (the last en-

try the state machine had applied), and the last included

term is the term of this entry. These are preserved to sup-

port the AppendEntries consistency check for the first log

entry following the snapshot, since that entry needs a pre-

vious log index and term. To enable cluster membership

changes (Section 6), the snapshot also includes the latest

configuration in the log as of last included index. Once a

server completes writing a snapshot, it may delete all log

entries up through the last included index, as well as any

prior snapshot.

Although servers normally take snapshots indepen-

dently, the leader must occasionally send snapshots to fol-

lowers that lag behind. This happens when the leader

has already discarded the next log entry that it needs to

send to a follower. Fortunately, this situation is unlikely

in normal operation: a follower that has kept up with the

leader would already have this entry. However, an excep-

tionally slow follower or a new server joining the cluster

(Section 6) would not. The way to bring such a follower

up-to-date is for the leader to send it a snapshot over the

network.

Our implementation uses a new RPC called Install-

Snapshot for leaders to send snapshots to followers that

are too far behind. Upon receiving a snapshot with this

RPC, a follower must decide what to do with its existing

log entries. It must remove any log entries that conflict

with the snapshot (this is similar to the AppendEntries

RPC). If the follower has an entry that matches the snap-

shot’s last included index and term, then there is no con-

flict: it removes only the prefix of its log that the snapshot

replaces. Otherwise, the follower removes its entire log;

it is all superseded by the snapshot.

This snapshotting approach departs from Raft’s strong

leader principle, since followers can take snapshots with-

out the knowledge of the leader. In an alternative leader-

based approach, only the leader would create a snapshot,

then it would send this snapshot to each of its followers.

This has two disadvantages. First, sending the snapshot to

each follower would waste network bandwidth and slow

the snapshotting process. Each follower already has the

information needed to produce its own snapshots, and it

is typically much cheaper for a server to produce a snap-

shot from its local state than it is to send and receive one

over the network. Second, the leader’s implementation

would be more complex. For example, the leader would

need to send snapshots to followers in parallel with repli-

cating new log entries to them, so as not to block new

client requests.

There are two more issues that impact snapshotting per-

formance. First, servers must decide when to snapshot. If

a server snapshots too often, it wastes disk bandwidth and

energy; if it snapshots too infrequently, it risks exhaust-

ing its storage capacity, and it increases the time required

to replay the log during restarts. One simple strategy is

to take a snapshot when the log reaches a fixed size in

bytes. If this size is set to be significantly larger than the

expected size of a snapshot, then the disk bandwidth over-

head for snapshotting will be small.

The second performance issue is that writing a snap-

shot can take a significant amount of time, and we do

not want this to delay normal operations. The solution is

to use copy-on-write techniques so that new updates can

be accepted without impacting the snapshot being writ-

ten. For example, state machines built with functional

data structures naturally support this. Alternatively, the

operating system’s copy-on-write support (e.g., fork on

POSIX Linux) can be used to create an in-memory snap-

shot of the entire state machine (our implementation uses

this approach).

8 Client interaction
This section describes how clients interact with Raft,

including finding the cluster leader, and supporting lin-

earizable semantics [8] , and servicing read-only requests

more efficiently. These issues apply to all consensus-

based systems, and solutions are typically similar.

Clients of Raft send all of their requests to the leader.

When a client first starts up, it connects to a randomly-

12

chosen server. If the client’s first choice is not the leader,

that server will reject the client’s request and supply in-

formation about the most recent leader it has heard from

(AppendEntries requests include the network address of

the leader). If the leader crashes, client requests will time

out; clients then try again with randomly-chosen servers.

Our goal for Raft is to implement linearizable seman-

tics (each operation appears to execute instantaneously,

exactly once, at some point between its invocation and

its response). However, as described so far Raft can exe-

cute a command multiple times: for example, if the leader

crashes after committing the log entry but before respond-

ing to the client, the client will retry the command with a

new leader, causing it to be executed a second time. The

solution is for clients to assign unique serial numbers to

every command. Then, the state machine tracks the latest

serial number processed for each client, along with the as-

sociated response. If it receives a command whose serial

number has already been executed, it responds immedi-

ately without re-executing the request.

Read-only operations can be serialized into the Raft log

the same way as other client requests, or they can be ser-

viced more efficiently by handling them separately. In this

case, leaders must take two extra precautions so that they

do no return stale information (which would violate lin-

earizability). First, a leader must have the latest informa-

tion on commitment. The Leader Completeness Property

guarantees that a leader has all committed entries, but at

the start of its term, it may not know which those are. To

find out, it needs to commit an entry from its term, and

then all previous entries are committed. Unfortunately, a

new leader may not have any entries from its term (if no

new client write requests have been appended to the log

during its term). To avoid this situation, a leader can write

a blank no-op entry into its log at the start of its term.

Second, a leader must ensure that it has not been deposed

(is this defined yet?) before responding to a read-only re-

quest. To reconfirm its leadership, it can exchange heart-

beat messages with a majority of the cluster before re-

sponding to read-only requests. Alternatively, the leader

could rely on the heartbeat mechanism to provide a form

of lease [7], but this would rely on timing for safety (it

assumes bounded clock skew).

9 Implementation and evaluation
We have implemented Raft as part of a replicated

state machine that stores configuration information for

RAMCloud [28] and assists in failover of the RAMCloud

coordinator. The Raft implementation contains roughly

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

R
a

ft
 g

ra
d

e

Paxos grade

Raft then Paxos
Paxos then Raft

Figure 13: A scatter plot of 43 participants’ grades compar-

ing their performance on each exam. Points above the diago-

nal (33) represent participants who scored higher on the Raft

exam.

1500 lines of C++ code, not including tests, comments,

or blank lines. The source code is freely available [21].

There are also about 25 other open source implementa-

tions [29] of Raft in various stages of development, based

on drafts of this paper.

The remainder of this section evaluates Raft using three

criteria: understandability, correctness, and performance.

9.1 Understandability

To measure Raft’s understandability relative to Paxos,

we conducted an experimental study using upper-level un-

dergraduate and graduate students in an Advanced Oper-

ating Systems course at Stanford University and a Dis-

tributed Computing course at U.C. Berkeley. We recorded

a video lecture of Raft and another of Paxos, and created

corresponding quizzes. The Raft lecture covered the con-

tent of this paper except for log compaction; the Paxos

lecture covered enough material to create an equivalent

replicated state machine, including single-decree Paxos,

multi-decree Paxos, reconfiguration, and a few optimiza-

tions needed in practice (such as leader election). The

quizzes tested basic understanding of the algorithms and

also required students to reason about corner cases. Each

student watched one video, took the corresponding quiz,

watched the second video, and took the second quiz.

About half of the participants did the Paxos portion first

and the other half did the Raft portion first in order to

account for both individual differences in performance

and experience gained from the first portion of the study.

We compared participants’ scores on each quiz to deter-

mine whether participants showed a better understanding

of Raft.

Concern Steps taken to mitigate bias Materials for review [26]

Equal lecture quality Same lecturer for both. Paxos lecture based on and improved from existing

materials used in several universities. Paxos lecture is 14% longer.

videos

Equal quiz difficulty Questions grouped in difficulty and paired across exams. quizzes

Fair grading Used rubric. Graded in random order, alternating between quizzes. rubric

Table 1: Concerns of possible bias against Paxos in the study, steps taken to counter each, and additional materials available.

13

 0

 5

 10

 15

 20

implement explain

n
u

m
b

e
r

o
f
p

a
rt

ic
ip

a
n

ts

Paxos much easier
Paxos somewhat easier
Roughly equal
Raft somewhat easier
Raft much easier

Figure 14: Using a 5-point scale, participants were asked

(left) which algorithm they felt would be easier to implement

in a functioning, correct, and efficient system, and (right)

which would be easier to explain to a CS graduate student.

We tried to make the comparison between Paxos and

Raft as fair as possible. The experiment favored Paxos in

two cases: 15 of the 43 participants reported having some

prior experience with Paxos, and the Paxos video is 14%

longer than the Raft video. As summarized in Table 1, we

have taken steps to mitigate potential sources of bias. All

of our materials are available for review [26].

On average, participants scored 4.9 points higher on the

Raft quiz than on the Paxos quiz (out of a possible 60

points, the mean Raft score was 25.7 and the mean Paxos

score was 20.8); Figure 13 shows their individual scores.

A paired t-test states that, with 95% confidence, the true

distribution of Raft scores has a mean at least 2.5 points

larger than the true distribution of Paxos scores. Account-

ing for whether people learn Paxos or Raft first and prior

experience with Paxos, a linear regression model predicts

scores 11.0 points higher on the Raft exam than on the

Paxos exam (prior Paxos experience helps Paxos signifi-

cantly and helps Raft slightly less). Curiously, the model

also predicts scores 6.3 points lower on Raft for people

that have already taken the Paxos quiz; although we don’t

know why, this does appear to be statistically significant.

We also surveyed participants after their quizzes to see

which algorithm they felt would be easier to implement

or explain; these results are shown in Figure 14. An over-

whelming majority of participants reported Raft would be

easier to implement and explain (33 of 41 for each ques-

tion). However, these self-reported feelings may be less

reliable than participants’ quiz scores, and participants

may have been biased by knowledge of our hypothesis

that Raft is easier to understand.

9.2 Correctness

We have developed a formal specification and a proof

of safety for the consensus mechanism described in Sec-

tion 5. The formal specification [31] makes the informa-

tion summarized in Figure 2 completely precise using the

TLA+ specification language [15]. It is about 400 lines

long. It specifies the actions each server may take, and

the conditions that enable these actions. This is useful

on its own for anyone implementing Raft and also serves

as the subject of the proof. We have mechanically proven

the Log Completeness Property using the TLA proof sys-

0%

20%

40%

60%

80%

100%

 100 1000 10000 100000

c
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

150-150ms
150-151ms
150-155ms
150-175ms
150-200ms
150-300ms

0%

20%

40%

60%

80%

100%

 0 100 200 300 400 500 600

c
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

time without leader (ms)

12-24ms
25-50ms

50-100ms
100-200ms
150-300ms

Figure 15: The time to detect and replace a crashed leader.

The top graph varies the amount of randomness in election

timeouts, and the bottom graph scales the minimum election

timeout. Each line represents 1000 trials (except for 100 tri-

als for “150-150ms”) and corresponds to a particular choice

of election timeouts; for example, “150-155ms” means that

election timeouts were chosen randomly and uniformly be-

tween 150ms and 155ms. The measurements were taken on

a cluster of 5 servers with a broadcast time of roughly 15ms.

Results for a cluster of 9 servers are similar.

tem [5]. However, this proof relies on invariants that have

not been mechanically checked (for example, we have not

proven the type safety of the specification).

Furthermore, we have written an informal proof [31]

of the Log Completeness Property (should expand this to

cover State Machine Safety instead) which is complete (it

relies on the specification alone) and relatively precise (it

is about 9 pages or 3500 words long).

9.3 Performance

The performance of Raft is similar to other consensus

algorithms such as Paxos. The most important case for

performance is where an established leader is replicat-

ing new log entries. Raft achieves this using the min-

imal number of messages (a single round-trip from the

leader to half the cluster). It is also possible to further

improve Raft’s performance. For example, it easily sup-

ports batching and pipelining requests for higher through-

put and lower latency. Various optimizations have been

proposed in the literature for other algorithms; we think

many of these could be applied to Raft, but we leave this

to future work.

We used our Raft implementation to measure the per-

formance of Raft’s leader election algorithm and answer

two questions. First, does the election process converge

quickly? Second, what is the minimum downtime that

can be achieved after leader crashes?

To measure leader election, we repeatedly crashed the

leader of a cluster of 5 servers and timed how long it took

14

to detect the crash and elect a new leader (see Figure 15).

To generate a worst-case scenario, the servers in each trial

had different log lengths, so some candidates were not el-

igible to become leader. Furthermore, to encourage split

votes, our test script triggered a synchronized broadcast of

heartbeat RPCs from the leader before terminating its pro-

cess (this approximates the behavior of the leader repli-

cating a new log entry prior to crashing). The leader was

crashed uniformly randomly within its heartbeat interval,

which was half of the minimum election timeout for all

tests. Thus, the smallest possible downtime was about

half of the minimum election timeout.

The top graph in Figure 15 shows that a small amount

of randomization in the election timeout is enough to

avoid split votes in elections. In the absence of random-

ness, leader election consistently took longer than 10 sec-

onds in our tests, implying many split votes. Adding just

5ms of randomness helps significantly, resulting in a me-

dian downtime of 287ms. Using more randomness im-

proves worst-case behavior: with 50ms of randomness the

worst-case completion time (over 1000 trials) was 513ms.

The bottom graph in Figure 15 shows that downtime

can be reduced by reducing the election timeout. With

an election timeout of 12-24ms, it takes only 35ms on

average to elect a leader (the longest trial took 152ms).

However, lowering the timeouts beyond this point violates

Raft’s timing requirement: leaders have difficulty broad-

casting heartbeats before other servers start new elections.

This can cause unnecessary leader changes and lower

overall system availability. We recommend using a con-

servative election timeout such as 150-300ms; such time-

outs are unlikely to cause unnecessary leader changes and

will still provide good availability.

10 Related work
There have been numerous publications related to con-

sensus algorithms, many of which fall into one of the fol-

lowing categories:

• Lamport’s original description of Paxos [13], and at-

tempts to explain it more clearly [14, 18, 19].

• Elaborations of Paxos, which fill in missing details

and modify the algorithm to provide a better founda-

tion for implementation [24, 34, 11].

• Systems that implement consensus algorithms, such

as Chubby [1, 3], ZooKeeper [9, 10], and Span-

ner [4]. The algorithms for Chubby and Spanner

have not been published in detail, though both claim

to be based on Paxos. ZooKeeper’s algorithm has

been published in more detail, but it is quite differ-

ent from Paxos.

• Performance optimizations that can be applied to

Paxos [16, 17, 2, 23, 25].

• Oki and Liskov’s Viewstamped Replication (VR), an

alternative approach to consensus developed around

the same time as Paxos. The original description [27]

was intertwined with a protocol for distributed trans-

actions, but the core consensus protocol has been

separated in a recent update [20]. VR uses a leader-

based approach with many similarities to Raft.

The greatest difference between Raft and other con-

sensus algorithms is Raft’s strong leadership: Raft uses

leader election as an essential part of the consensus proto-

col, and it concentrates as much functionality as possible

in the leader. This approach results in a simpler algorithm

that is easier to understand. For example, in Paxos, leader

election is orthogonal to the basic consensus protocol: it

serves only as a performance optimization and is not re-

quired for achieving consensus. However, this results in

additional mechanism: Paxos includes both a two-phase

protocol for basic consensus and a separate mechanism

for leader election. In contrast, Raft incorporates leader

election directly into the consensus algorithm and uses it

as the first of the two phases of consensus. This results in

less mechanism than in Paxos.

Raft also has less mechanism than VR or ZooKeeper,

even though both of those systems are also leader-based.

The reason for this is that Raft minimizes the function-

ality in non-leaders. For example, in Raft, log entries

flow in only one direction: outward from the leader in

AppendEntries RPCs. In VR and ZooKeeper false: Ben

says their implementation doesn’t do this, log entries flow

in both directions (leaders can receive log entries during

the election process); this results in additional mechanism

and complexity. Raft has fewer message types than any

other algorithm for consensus-based log replication that

we are aware of.

Several different approaches for cluster member-

ship changes have been proposed or implemented in

other work, including Lamport’s original proposal [13],

VR [20], and SMART [22]. We chose the joint consensus

approach for Raft because it leverages the rest of the con-

sensus protocol, so that very little additional mechanism is

required for membership changes. Lamport’s α-based ap-

proach was not an option for Raft because it assumes con-

sensus decisions can be made without a leader. In com-

parison to VR and SMART, Raft’s reconfiguration algo-

rithm has the advantage that membership changes can oc-

cur without limiting the processing of normal requests; in

contrast, VR must stop all normal processing during con-

figuration changes, and SMART imposes an α-like limit

on the number of outstanding requests. Raft’s approach

also adds less mechanism then either VR or SMART.

11 Conclusion
Algorithms are often designed with correctness, effi-

ciency, and/or conciseness as the primary goals. Although

these are all worthy goals, we believe that understandabil-

ity is just as important. None of the other goals can be

achieved until developers render the algorithm into a prac-

tical implementation, which will inevitably deviate from

15

and expand upon the published form. Unless developers

have a deep understanding of the algorithm and can create

intuitions about it, it will be difficult for them to retain its

desirable properties in their implementation.

In this paper we addressed the issue of distributed con-

sensus, where a widely accepted but impenetrable algo-

rithm, Paxos, has challenged students and developers for

many years. We developed a new algorithm, Raft, which

we have shown to be more understandable than Paxos.

We also believe that Raft provides a better foundation for

system building. Furthermore, it achieves these benefits

without sacrificing efficiency or correctness. Using un-

derstandability as the primary design goal changed the

way we approached the design of Raft; as the design pro-

gressed we found ourselves reusing a few techniques re-

peatedly, such as decomposing the problem and simplify-

ing the state space. These techniques not only improved

the understandability of Raft but also made it easier to

convince ourselves of its correctness.

12 Acknowledgments

The user study would not have been possible with-

out the support of Ali Ghodsi, David Mazières, and the

students of CS 294-91 at Berkeley and CS 240 at Stan-

ford. Scott Klemmer helped us design the user study,

and Nelson Ray advised us on statistical analysis. The

Paxos slides for the user study borrowed heavily from

a slide deck originally created by Lorenzo Alvisi. A

special thanks goes to David Mazières for finding the

last (we hope!) and most subtle bug in Raft. Many

people provided helpful feedback on the paper and user

study materials, including Ed Bugnion, Michael Chan,

Daniel Giffin, Arjun Gopalan, Jon Howell, Vimalkumar

Jeyakumar, Ankita Kejriwal, Aleksandar Kracun, Amit

Levy, Joel Martin, Satoshi Matsushita, Oleg Pesok, David

Ramos, Robbert van Renesse, Mendel Rosenblum, Nico-

las Schiper, Deian Stefan, Andrew Stone, Ryan Stutsman,

David Terei, Stephen Yang, Matei Zaharia, and anony-

mous conference reviewers. Werner Vogels tweeted a

link to an earlier draft, which gave Raft significant ex-

posure. This work was supported by the Gigascale Sys-

tems Research Center and the Multiscale Systems Cen-

ter, two of six research centers funded under the Fo-

cus Center Research Program, a Semiconductor Research

Corporation program, by STARnet, a Semiconductor Re-

search Corporation program sponsored by MARCO and

DARPA, by the National Science Foundation under Grant

No. 0963859, and by grants from Facebook, Google, Mel-

lanox, NEC, NetApp, SAP, and Samsung. Diego Ongaro

is supported by The Junglee Corporation Stanford Gradu-

ate Fellowship.

References

[1] BURROWS, M. The chubby lock service for loosely-coupled dis-

tributed systems. In Proceedings of the 7th symposium on Op-

erating systems design and implementation (Berkeley, CA, USA,

2006), OSDI ’06, USENIX Association, pp. 335–350.

[2] CAMARGOS, L. J., SCHMIDT, R. M., AND PEDONE, F. Multico-

ordinated paxos. In Proceedings of the twenty-sixth annual ACM

symposium on Principles of distributed computing (New York, NY,

USA, 2007), PODC ’07, ACM, pp. 316–317.

[3] CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J. Paxos

made live: an engineering perspective. In Proceedings of the

twenty-sixth annual ACM symposium on Principles of distributed

computing (New York, NY, USA, 2007), PODC ’07, ACM,

pp. 398–407.

[4] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,

C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER,

C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E.,

LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D.,

QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK,

M., TAYLOR, C., WANG, R., AND WOODFORD, D. Spanner:

Google’s globally-distributed database. In Proceedings of the 10th

USENIX conference on Operating Systems Design and Implemen-

tation (Berkeley, CA, USA, 2012), OSDI’12, USENIX Associa-

tion, pp. 251–264.

[5] COUSINEAU, D., DOLIGEZ, D., LAMPORT, L., MERZ, S.,

RICKETTS, D., AND VANZETTO, H. TLA+ proofs. In FM

(2012), D. Giannakopoulou and D. Méry, Eds., vol. 7436 of Lec-

ture Notes in Computer Science, Springer, pp. 147–154.

[6] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google

file system. In Proceedings of the nineteenth ACM symposium on

Operating systems principles (New York, NY, USA, 2003), SOSP

’03, ACM, pp. 29–43.

[7] GRAY, C., AND CHERITON, D. Leases: An efficient fault-tolerant

mechanism for distributed file cache consistency. In Proceedings

of the 12th ACM Ssymposium on Operating Systems Principles

(1989), pp. 202–210.

[8] HERLIHY, M. P., AND WING, J. M. Linearizability: a correct-

ness condition for concurrent objects. ACM Trans. Program. Lang.

Syst. 12 (July 1990), 463–492.

[9] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.

Zookeeper: wait-free coordination for internet-scale systems. In

Proceedings of the 2010 USENIX annual technical conference

(Berkeley, CA, USA, 2010), USENIX ATC ’10, USENIX Asso-

ciation, pp. 11–11.

[10] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI, M. Zab: High-

performance broadcast for primary-backup systems. In Proceed-

ings of the 2011 IEEE/IFIP 41st International Conference on De-

pendable Systems&Networks (Washington, DC, USA, 2011), DSN

’11, IEEE Computer Society, pp. 245–256.

[11] KIRSCH, J., AND AMIR, Y. Paxos for system builders, 2008.

[12] LAMPORT, L. Time, clocks, and the ordering of events in a dis-

tributed system. Commun. ACM 21, 7 (July 1978), 558–565.

[13] LAMPORT, L. The part-time parliament. ACM Trans. Comput.

Syst. 16, 2 (May 1998), 133–169.

[14] LAMPORT, L. Paxos made simple. ACM SIGACT News 32, 4

(Dec. 2001), 18–25.

[15] LAMPORT, L. Specifying Systems, The TLA+ Language and Tools

for Hardware and Software Engineers. Addison-Wesley, 2002.

[16] LAMPORT, L. Generalized consensus and paxos.

http://research.microsoft.com/apps/pubs/

default.aspx?id=64631, 2005.

[17] LAMPORT, L. Fast paxos. http://research.microsoft.

com/apps/pubs/default.aspx?id=64624, 2006.

[18] LAMPSON, B. W. How to build a highly available system

using consensus. In Distributed Algorithms, O. Baboaglu and

K. Marzullo, Eds. Springer-Verlag, 1996, pp. 1–17.

16

[19] LAMPSON, B. W. The abcd’s of paxos. In Proceedings of the 20th

ACM Symposium on Principles of Distributed Computing (New

York, NY, USA, 2001), PODC 2001, ACM, pp. 13–13.

[20] LISKOV, B., AND COWLING, J. Viewstamped replication revis-

ited. Tech. Rep. MIT-CSAIL-TR-2012-021, MIT, July 2012.

[21] LogCabin source code. http://github.com/logcabin/

logcabin.

[22] LORCH, J. R., ADYA, A., BOLOSKY, W. J., CHAIKEN, R.,

DOUCEUR, J. R., AND HOWELL, J. The smart way to mi-

grate replicated stateful services. In Proceedings of the 1st

ACM SIGOPS/EuroSys European Conference on Computer Sys-

tems 2006 (New York, NY, USA, 2006), EuroSys ’06, ACM,

pp. 103–115.

[23] MAO, Y., JUNQUEIRA, F. P., AND MARZULLO, K. Mencius:

building efficient replicated state machines for wans. In Pro-

ceedings of the 8th USENIX conference on Operating systems de-

sign and implementation (Berkeley, CA, USA, 2008), OSDI’08,

USENIX Association, pp. 369–384.

[24] MAZIÈRES, D. Paxos made practical. Jan. 2007.

[25] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M. There

is more consensus in egalitarian parliaments. In Proceedings of

the 24th ACM Symposium on Operating System Principles (New

York, NY, USA, 2013), SOSP 2013, ACM.

[26] Raft user study. http://raftuserstudy.s3-website-

us-west-1.amazonaws.com/study/.

[27] OKI, B. M., AND LISKOV, B. H. Viewstamped replication: A

new primary copy method to support highly-available distributed

systems. In Proceedings of the seventh annual ACM Symposium on

Principles of distributed computing (New York, NY, USA, 1988),

PODC ’88, ACM, pp. 8–17.

[28] OUSTERHOUT, J., AGRAWAL, P., ERICKSON, D., KOZYRAKIS,

C., LEVERICH, J., MAZIÈRES, D., MITRA, S., NARAYANAN,

A., ONGARO, D., PARULKAR, G., ROSENBLUM, M., RUM-

BLE, S. M., STRATMANN, E., AND STUTSMAN, R. The case

for ramcloud. Commun. ACM 54 (July 2011), 121–130.

[29] Raft implementations. https://ramcloud.stanford.

edu/wiki/display/logcabin/LogCabin.

[30] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and im-

plementation of a log-structured file system. ACM Trans. Comput.

Syst. 10 (February 1992), 26–52.

[31] Safety proof and formal specification for Raft.

http://raftuserstudy.s3-website-us-west-

1.amazonaws.com/proof.pdf.

[32] SCHNEIDER, F. B. Implementing fault-tolerant services using the

state machine approach: a tutorial. ACM Comput. Surv. 22, 4 (Dec.

1990), 299–319.

[33] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R.

The hadoop distributed file system. In Proceedings of the 2010

IEEE 26th Symposium on Mass Storage Systems and Technologies

(MSST) (Washington, DC, USA, 2010), MSST ’10, IEEE Com-

puter Society, pp. 1–10.

[34] VAN RENESSE, R. Paxos made moderately complex. Tech. rep.,

Cornell University, 2012.

17

