# **RAMCloud Overview**

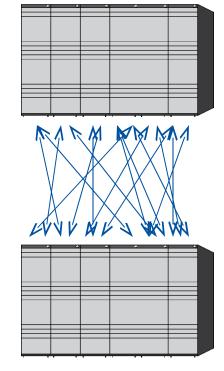
John Ousterhout

**Stanford University** 



### Introduction

- Large-scale storage system entirely in DRAM
- Interesting combination: scale, low latency
- Enable new applications?
- The future of datacenter storage?


### Outline

- Overview of RAMCloud
- Motivation
- Research challenges
- Basic cluster structure and data model

# **The Basic Idea**

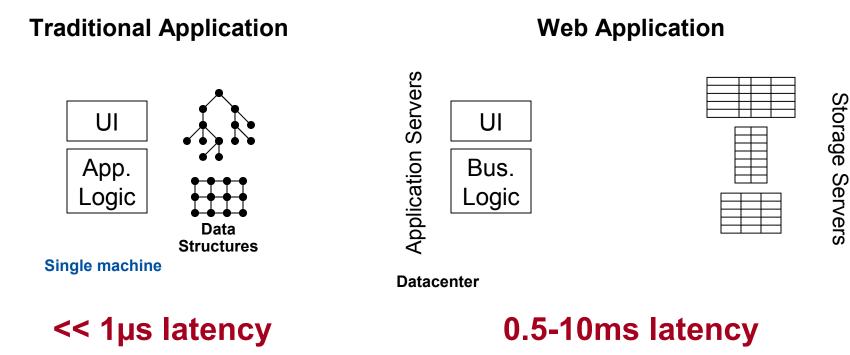
- Storage for datacenters
- 1000-10000 commodity servers
- 32-64 GB DRAM/server
- All data always in RAM
- Durable and available
- Performance goals:
  - High throughput: 1M ops/sec/server
  - Low-latency access: 5-10µs RPC





#### **Storage Servers**

Datacenter Slide 4


April 1, 2010

**RAMCloud** Overview

### **Example Configurations**

|                   | Today  | 5-10 years |
|-------------------|--------|------------|
| # servers         | 2000   | 4000       |
| GB/server         | 24GB   | 256GB      |
| Total capacity    | 48TB   | 1PB        |
| Total server cost | \$3.1M | \$6M       |
| \$/GB             | \$65   | \$6        |

# **RAMCloud Motivation: Latency**



Large-scale apps struggle with high latency

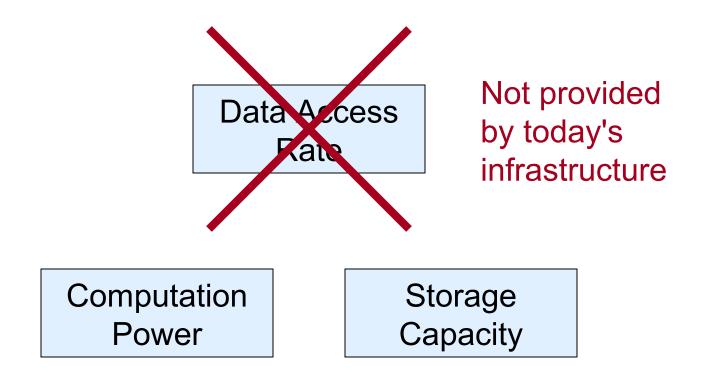
Facebook: can only make 100-150 internal requests per page

April 1, 2010

**RAMCloud Overview** 

### **Dimensions of Scalability**

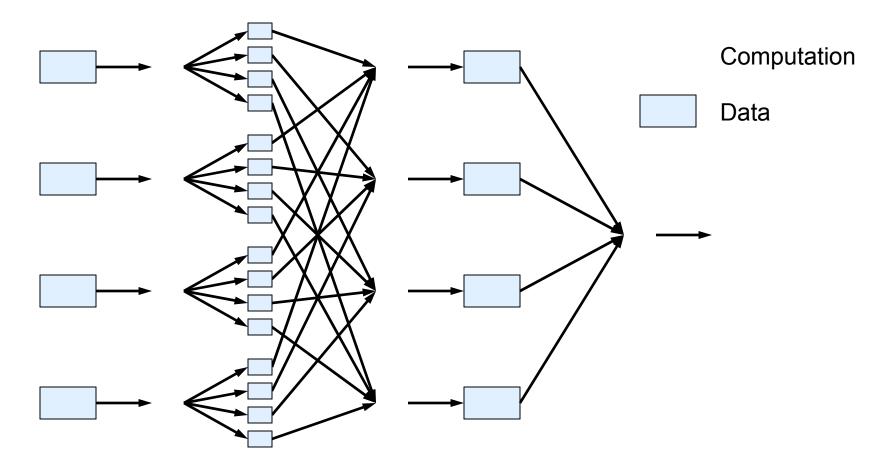



Computation Power

Storage Capacity

April 1, 2010

**RAMCloud Overview** 


### **Dimensions of Scalability**

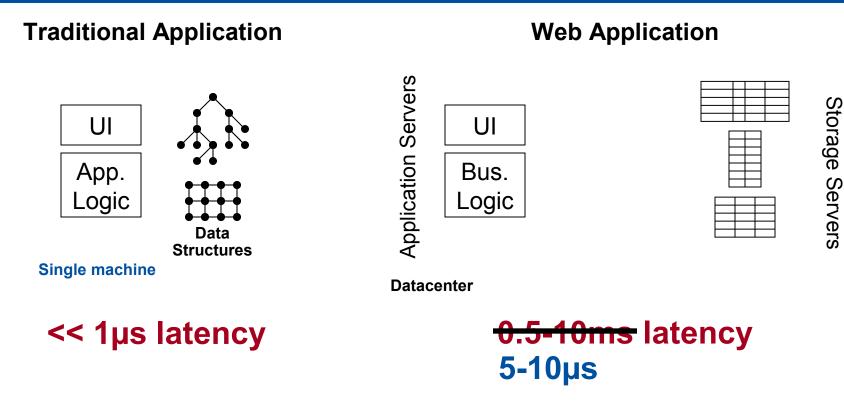


April 1, 2010

**RAMCloud** Overview

### **MapReduce**




 $\checkmark$  Sequential data access  $\rightarrow$  high data access rate

Not all applications fit this model

April 1, 2010

RAMCloud Overview

# **RAMCloud Motivation: Latency**



- RAMCloud goal: large scale and low latency
- Enable a new breed of information-intensive applications

April 1, 2010 RAMCloud Overview

# **RAMCloud Motivation: Scalability**

- Relational databases don't scale
- Every large-scale Web application has problems:
  - Facebook: 4000 MySQL instances + 2000 memcached servers
- Major system redesign for every 10x increase in scale
- New forms of storage appearing:
  - Bigtable
  - Dynamo
  - PNUTS
  - Sinfonia
  - H-store
  - memcached

# **RAMCloud Motivation: Technology**

#### Disk access rate not keeping up with capacity:

|                                      | Mid-1980's | 2009     | Change |
|--------------------------------------|------------|----------|--------|
| Disk capacity                        | 30 MB      | 500 GB   | 16667x |
| Max. transfer rate                   | 2 MB/s     | 100 MB/s | 50x    |
| Latency (seek & rotate)              | 20 ms      | 10 ms    | 2x     |
| Capacity/bandwidth<br>(large blocks) | 15 s       | 5000 s   | 333x   |
| Capacity/bandwidth<br>(1KB blocks)   | 600 s      | 58 days  | 8333x  |
| Jim Gray's rule                      | 5 min      | 30 hrs   | 360x   |

- Disks must become more archival
- More information must move to memory

April 1, 2010 RAMO

**RAMCloud Overview** 

# Why Not a Caching Approach?

### • Lost performance:

- 1% misses  $\rightarrow$  10x performance degradation
- Hard to approach 1% misses (Facebook ~ 5-7% misses)

### • Won't save much money:

- Already have to keep information in memory
- Example: Facebook caches ~75% of data size

### • Changes disk management issues:

Optimize for reads, vs. writes & recovery

# **Why not Flash Memory?**

### Many candidate technologies besides DRAM

- Flash (NAND, NOR)
- PC RAM
- ...

### • DRAM enables lowest latency today:

5-10x faster than flash

# Most RAMCloud techniques will apply to other technologies

April 1, 2010

# **Is RAMCloud Capacity Sufficient?**

### • Facebook: 200 TB of (non-image) data in 2009

### • Amazon:

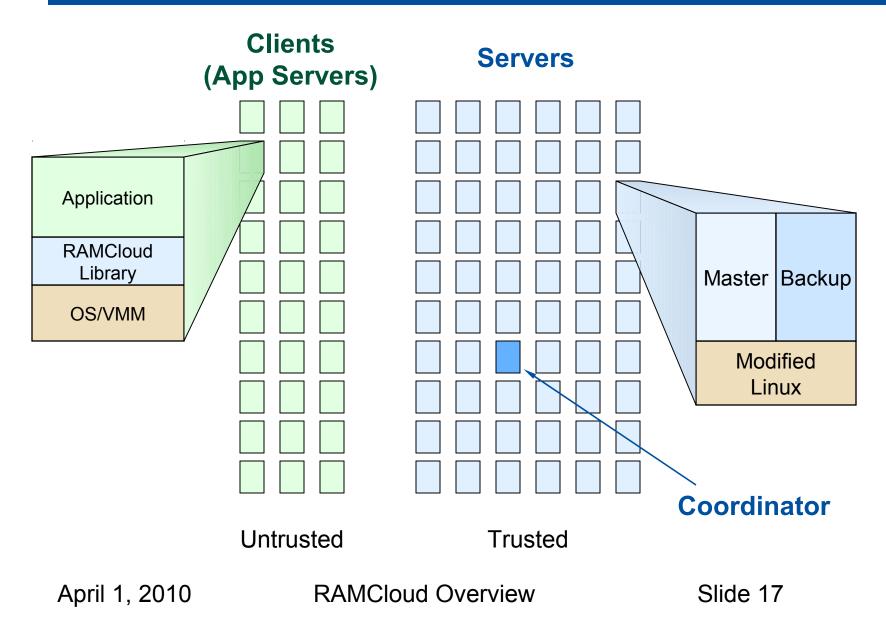
Revenues/year: Orders/year: Bytes/order: Order data/year: RAMCloud cost: \$16B 400M? (\$40/order?) 1000-10000? 0.4-4.0 TB? \$26-260K?

### • United Airlines:

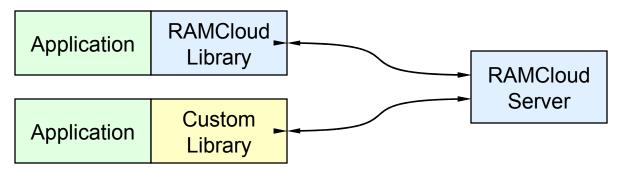
Total flights/day:4000? (30,000 for all airlines in U.S.)Passenger flights/year:200M?Bytes/passenger-flight:1000-10000?Order data/year:0.2-2.0 TB?RAMCloud cost:\$13-130K?

### Ready today for almost all online data; media soon

April 1, 2010


**RAMCloud Overview** 

### **RAMCloud Research Issues**


- Data durability/availability
- Fast RPCs
- Data model, concurrency/consistency model
- Data distribution, scaling
- Automated management
- Multi-tenancy
- Client-server functional distribution
- Node architecture

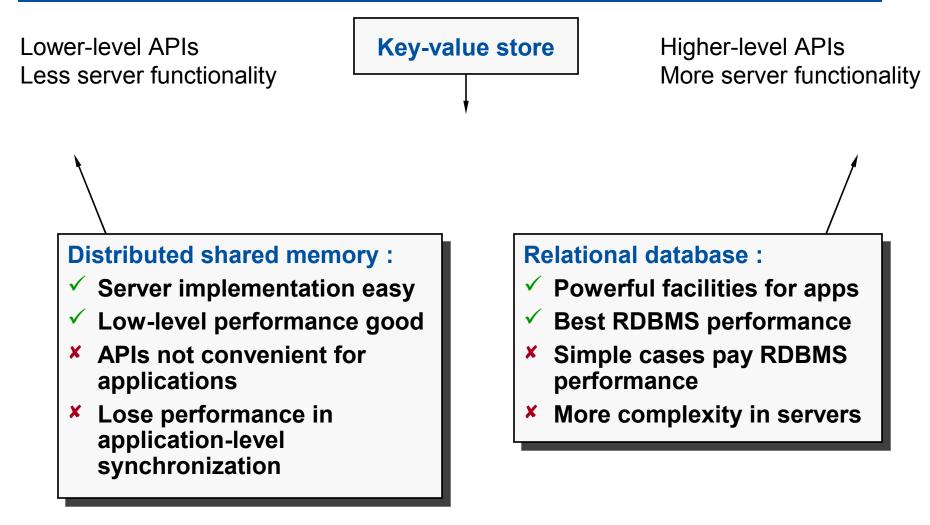
April 1, 2010 RAMCloud Overview

### **RAMCloud Cluster Structure**



# **Client Library vs. Server**




### • Move functionality to library?

- Flexibility: enable different implementations
- Throughput: offload servers
- May improve performance (e.g., aggregation)

### • Concentrate functionality in servers?

- May improve performance (e.g., faster synchronization)
- Can't depend on proper client behavior:
  - Security/access control
  - Consistency/crash recovery

# **Data Model Rationale**



#### How to get best application-level performance?

April 1, 2010

**RAMCloud Overview** 

# **Data Model Basics**

#### • Workspace:

- All data for one or more apps
- Unit of access control

#### • Table:

- Related collection of objects
- Object:
  - Variable-length up to 1MB
  - Contents opaque to servers

#### • Id:

- 64 bits, unique within table
- Chosen explicitly by client or implicitly by server (0,1,2,...)

#### • Version:

- 64 bits
- Guaranteed increasing, even across deletes

#### April 1, 2010

**RAMCloud Overview** 

#### Workspace

| id | object      | vers   |              |
|----|-------------|--------|--------------|
| id | object      | vers   |              |
| id | object      | vers   |              |
| id | object      | vers   |              |
|    |             |        |              |
| id | object      | vers   |              |
| id | <b>z</b>    |        |              |
| id | Table       | )      |              |
| id | Table<br>id | object | vers         |
| id | Table       | )      | vers<br>vers |
| id | Table<br>id | object |              |

### **Basic Operations**

```
get(tableId, objId) \rightarrow (blob, version)
```

```
put(tableId, blob) \rightarrow (objId, version)
```

```
put(tableId, objId, blob) \rightarrow (version)
```

```
delete(tableId, objId)
```

### Other facilities (discussed in later talks)

- Conditional updates
- Mini-transactions

### Indexes

# **Other Design Goals**

### • Data distributed automatically by RAMCloud:

- Tables can be split across multiple servers
- Indexes can be split across multiple servers
- Distribution transparent to applications

### • Multi-tenancy for cloud computing:

- Support multiple (potentially hostile) applications
- Cost proportional to application size

# Conclusion

- Interesting combination of scale and latency
- Enable more powerful uses of information at scale:
  - 1000-10000 clients
  - 100TB 1PB
  - 5-10 µs latency

# **Questions/Comments**

April 1, 2010

**RAMCloud Overview**