RAMCIloud Design Review

Indexing

Ryan Stutsman

April 1, 2010

Introduction

 Should RAMCloud provide indexing?
0 Leave indexes to client-side using transactions?

 Many apps have similar indexing needs
o Or compose standard mechanisms to suit their needs
o Can optimize for common needs on server-side

Implementation Issues

* Indexing on “opague” data
Partitioning Indexes
Consistency
Recovery/Avallability of Indexes

Explicit Search Keys

* Problem: RAMCloud treats objects as opaque
0 Server-side indexing without understanding the data?

put(tableld, person.objectld, person.pickle())

Explicit Search Keys

* Problem: RAMCloud treats objects as opaque
0 Server-side indexing without understanding the data?

 |dea: Apps provide search keys explicitly
0 Apps understand the data

put(tableld, person.objectld, {‘first’: person.first,
‘last’: person.last},
person.pickle())

first field ID Max last field ID Power

Explicit Search Keys

* Problem: RAMCloud treats objects as opaque
0 Server-side indexing without understanding the data?

» |dea: Apps provide search keys explicitly
0 Apps understand the data

put(tableld, person.objectld, {'first’. person.first,
‘last’: person.last},

person.pickle())

first field ID Max last field ID Power Blob

e Can eliminate redundancy
0 Search keys need not be repeated in object
0 Search keys + Blob are returned to app on get/lookup

Explicit Search Keys

e Lookups are distinct from gets

lookup(tableld, ‘last’, ‘Power’)

e Put atomically updates indexes and object
0 Detalls to follow

Partitioning Indexes

e Co-locate index and data

Index Data
A-Z 0-99

e Large tables?

o Large indexes?
o Can’t avoid multi-machine operations

Index Data Data
A-Z 0-149 150-299

Partitioning Indexes

e Split indexes on search key

Index Index Data Data
A-R S-Z 0-99 100-299

0 One extra access per lookup and put

e Split indexes on object ID

Index Data Index Data
0-99 0-99 100-199 100-199

Index Data
200-299 200-299

o0 Lookups go to all index fragments
o Puts are always local
0 Ordered enumeration of the index is problematic

Partitioning Indexes: Thoughts

e QOur decision (for now): On search key
1. Don’t want weakest-link lookup performance
2. To support enumerate and cursors for range queries

Consistency

* Problem: Index/Object inconsistency on puts
0 Since object and index may reside on different hosts
0 Apps may see index entries for objects not yet written

* Avoid fancy commit protocol, if possible

* |dea: Index entries “commit” on object put
0 Object puts are atomic
0 Index entries invalid until corresponding put finishes

Consistency: Lookup

* Request goes directly to correct index partition
0 “Not found” returns immediately

lookup(O, ‘last’: ‘Power’) Powell 102

Powers 299

Mel Powell

Consistency: Lookup

« Consistency iIs checked on hit
o If table and index agree the return the object

o Else “not found”
‘Powell’ == ‘Powell’ ok

/

lookup(O, ‘last’: ‘Powell’) Powell 102

299

Mel Powell

Consistency: Create

put(0, 301, {*first’: ‘Max’, Powell 102
Powers 299

‘last’: ‘Power’},
person.pickle())

Mel Powell

Consistency: Create

 Insert index entries before writing object
o What happens if a lookup happens in the meantime?

put(0, 301, {*first’: ‘Max’, Powell 102

‘last’: ‘I?ower’}, Power 301
person.pickle())
Powers 299

Mel Powell

Consistency: Concurrent Lookup

« Concurrent ops ignore inconsistent entries

put(0, 301, {*first’: ‘Max’, Powell 102

‘last’: ‘Eower’}, Power 301
person.pickle())
Powers 299

Mel Powell

lookup(O, ‘last’: ‘Power’)

Consistency: Concurrent Lookup

« Concurrent ops ignore inconsistent entries

put(0, 301, {*first’: ‘Max’, Powell 102

‘last’: ‘Eower’}, Power 301
person.pickle())
Powers 299

el Powel || NS

lookup(O, ‘last’: ‘Power’)

Consistency: Create (continued)

* Insert index entries before writing object

put(0, 301, {*first’: ‘Max’, Powell
‘last’: ‘Power’},
person.pickle())

Mel Powell

Power
Powers

Consistency: Create

* Put completes; index entries now valid

put(0, 301, {*first’: ‘Max’, Powell
‘last’: ‘Power’},
person.pickle())

Mel Powell

Power

Powers

Consistency: Delete

delete(0, 301) Powell

Power
Powers

Mel Powell

Consistency: Delete

delete(0, 301) Powell

Power
Powers

Mel Powell

Consistency: Delete

delete(0, 301) 102

299

Powell
Powers

Mel Powell

Consistency: Update

put(0, 299, {'first’: ‘Mary’, Powell 102
Powers 299

‘last’: ‘Bowers’},
person.pickle())

Mel Powell

Consistency: Update

« Compare previous index entries
o Insert new value if updated

put(0, 299, {first: ‘Mary’, _ Bowers 299
last:"Bowers'}, Powell 102

_ ~person.pickle()) H
Powers 299

\~— —”
_eam o - -

Consistency: Update

o Commit by writing the new value
o Old index entries ignored by lookup since inconsistent

put(0, 299, {*first’: ‘Mary’, Bowers 299

last’ Bowers h Powell 102
person.pickle())

Powers 299

Mel Powell

Consistency: Update

e Cleanup old, inconsistent entries

put(0, 299, {*first’: ‘Mary’, Bowers 299
Powell 102

‘last’: ‘Bowers’},
person.pickle())

Mel Powell

Consistency: Thoughts

* Low-latency gives simplified consistency

e Turn atomic puts into atomic index updates
o All index updates for an object go through master
0 Index entries invalid until corresponding put completes

Index Recovery

e Problem: Unavailable until indexes recover

o Many requests will be lookups
o These will block unless indexes are recovered

 Rebuild from other masters?

o TODO why this fails
o TODO Doesn’t fail with sharding?

* Rebuild from backups?
o TODO

Index Recovery: Sharding

e Split on object ID
o Can always co-locate index with data
0 Index chunk at most 320 MB
o Each new master can rebuild in a fraction of a second

e Split on search key
0 Entire shards composed only of index data
o0 At most 640 MB apiece
» 0.6s to gather data, fraction of a second to rebuild
o Part or all of 640 MB may come from shards in recovery
* 0.6s + 0.6s = 1.2s upper bound

Index Recovery: Replication

* |dea: Replicate indexes once in RAM
o Threat is only to availability, not data loss

o |Idea: Only preserve the shape of the index
0 The search keys are stored in the log

« TODO

Index Recovery: Logging

« TODO

Summary

Apps provide search keys explicitly on put

Partition indexes on search key for easy
lookup/enumeration

o Atomic indexes from atomic puts
* Fast index recovery for high -availability

