
1

Logging & Data
Durability

Steve Rumble
Stanford University

April 1, 2010

Outline

● Need for Durable, Non-volatile Storage
● Buffered Logging
● Log-structured Memory
● Locating Log Objects
● Data Replication (for durability)
● Spreading Writes (for performance)
● Performance and Buffering Expectations

● Next talk will discuss recovery from durable storage

2

Data Durability

● We need durability
 Servers will fail
 The power will go out
 Failures will increase in frequency as we scale

● Assume they’re common, deal with them quickly
 Murphy’s Law is out to get us

● We need to replicate main memory contents
 Can’t use RAM

● Assumes we can keep RAM powered
● Too expensive: increase cost/decrease capacity by replication factor

 Can’t use local disk
● Too slow to recover
●What if the box dies?

3

Cluster Approach to Durability

● Problem: Make writes sufficiently durable while:
 Not horribly affecting latency
 Not artificially limiting aggregate write bandwidth

● Guiding Principles
 All backup devices favour sequential I/O

● Buffer writes
 All backup devices have significantly higher latency

● Buffer and asynchronously commit
 We are assuming lots (10s to 1,000s) of servers at our disposal

● Buffer on other servers

● Our Solution: Buffered Logging
 Each server logs updates in memory
 RPCs return when log updates reflected in k backup memories
 Backup servers asynchronously flush log updates to disk
 Every master server is also a backup 4

Buffered Logging

● All RAMCloud objects are logged
 Each server maintains one log (for now)
 Log modifications synchronised with backups

● Backups buffer fixed-sized pieces of the Log
●One log/server, k replicas implies 2k buffers per backup

 k replicas/master, double buffering for write & flush

5

DRAM

disk

DRAM

disk

Storage
Servers

write

log

async, batch
DRAM

disk

log

Server YServer X Server Z

Log-Structured Memory

● Problem: Server must keep track of the Log
 E.g., need to do cleaning

● Solution: Make server memory log-structured
 Memory layout matches disk layout
 Simplicity Benefit: Unify disk-based storage and memory allocation

●Handle RAM fragmentation while boosting write rates

● Drawbacks
 Couples disk utilisation with memory

● Log-structured Memory is LFS to the extreme
 RAM “caches” everything
 Disks are read only on failure
 Cleaning requires no disk reads! (avoids 1/2 of cleaning overhead) 6

Locating Objects in the Log

● How do we find objects in the main-memory Log?
 Hash table lookup
 Two cache misses from (tableId, objectId) to object

7

Log

Hash Table

h(tableid, objid)

Locating Objects in the Log

● How do we find objects in the main-memory Log?
 Hash table lookup
 Two cache misses from (tableId, objectId) to object

7

Log

Hash Table

h(tableid, objid)

Locating Objects in the Log

● How do we find objects in the main-memory Log?
 Hash table lookup
 Two cache misses from (tableId, objectId) to object

7

Log

Hash Table

h(tableid, objid)

Scattering Writes

● Problem: Need fast recovery
 Writing log updates to same k backups not good enough
 k * 100MB/s I/O bandwidth insufficient for quick recovery

● Solution: Scatter log across many spindles
 Don’t fix the k backup hosts for each master
 Fill buffers on k backups, then move on
 < 1 second to read 64GB from 1,000 disks

● For each new segment, choose a new set of k
 Find additional backups with idle bandwidth
 Can accommodate more writes immediately
 Example mechanism:

●Cache potential backup lists (obtained from cluster coordinator)
●Choose 2k of them as potentials and query to find the best k 8

Scattering Writes, cont’d

● Scattering writes is like statistical multiplexing
 Lets us supports large write bursts
 Servers make use of idle disk bandwidth throughout cluster

●Recall the full bisection bandwidth assumption

● Consider 1,000 node cluster:
 One 100MB/s disk per node
 Even with overheads, aggregate bandwidth in 10’s of GB/s range
 Best case well above 10GigE rates & our single server goals

● But what about worst case performance?
 Worst case: congestion at all backups

● Every node bound by backup disk I/O

9

Expected Sustained Write Rate

● Only 2.5% of the read rate!
 About 25,000 1KB objects/server/second

● Why? Write overheads:
 Log cleaning
 k replicas (every server is a backup)

● At best 1/k’th as much throughput as reads

● k = 2, log cleaning overhead 100%
 100MBs / 2k = 25MB/sec for writes
 25,000 1KB writes/sec
 Recall per-server read estimate: 1M 1KB reads/sec

● 1,000,000/25,000 = 2.5%

10

Boosting Writes

● 2.5% is conservative

● We can:
 Compress log buffers before flushing
 Add disks
 Do pre-flush cleaning (only flush live data)

● 3 disks/server, 2x compression, less cleaner overhead
 > 15% of read rate seems reasonable
 Flash SSDs would add another 2-3x today

● Need modest capacity devices with high bandwidth
 Prefer cheap bandwidth over cheap capacity
 Latency less important

11

How Big are the Buffers?

● Amortising overhead means sizing buffers properly

 Example: Want 90% utilisation
● Assume average overhead of 8ms per operation (seek + 1/2 rotation)
● 90% bandwidth => 72ms of data access for every op

 72ms at 100MB/s => 7.2MB per op

 Generalised:

● Buffering_Needed = Latency x x Disk_Bandwidth

12

Utilisation
1 - Utilisation

How Big are the Buffers? (cont’d)

● Buffering needed as function of desired utilisation

 ~7-8MB buffers means:
● 90% utilisation with 8ms, 100MB/s HD
● 96% utilisation with 2ms, 140MB/s 15K rpm server HD
● 99.7% utilisation with 100us, 250MB/s flash

13

0

4

8

12

16

5 15 25 35 45 55 65 75 85 95
% Disk Bandwidth Utilisation

Buffer
Size
(MB)

Generic HD (8ms, 100MB/s) Server HD (2ms, 140MB/s)
Flash SSD (100us, 250MB/s)

What About Flash?

● Latency too high for primary store, but what about
backup?

● Could be promising
 Flash is currently modest-sized and high bandwidth

● However
 SSDs are still very expensive
 Performance expectations are complex

● Our techniques should work well with flash
 Locality is still important, so buffered approach fits
 And may obviate complex FTLs

14

Conclusion & Discussion

● Conclusion
 RAMCloud uses Log-structured memory

● Each server has a Log
● Each log is backed up to k other servers’ disks
● All RAMCloud objects live in the Log
● Buffering is crucial due to non-volatile storage properties:

 Sequential I/O bias
 Access latency

●Memory structure matches disk structure
 Logs are distributed across the cluster, enabling:

● Fast recovery
●High burst write rates

● Possible Discussion Topics
 What disks are used in data centers today? Cheap IDE, SCSI?
 How does flash perform now? What can we expect in the future?
 Alternatives to logging? Will flash shortly obviate buffering?

15

End of the Line

● Do not pass Go.

16

Storing to Disk

● How do backups store data on disk?
 I.e. how are main memory write buffers drained?

● Considerations
 Disks become the system’s write rate bottleneck
 Locality is crucial for performance

●Need very fast writes to drain backup write buffers
●Need efficient reads to achieve fast recovery

 Need to play standard filesystem games
● Amortise seeks and rotational latency => batched writes

17

LFS, Revisited

● Make the main memory object store log-structured
 Objects live in the log at all times

● What is a Log?
 A set of (1 + M + N) segments:

●One “head”
 appends go to it

●M segments are free
 future heads; no live data

●N segments are in use
 may contain live data

● The Log simply:
 appends to the head segment (and synchronises with backups)
 Tries to maintain free segments for future appends

18

Log Cleaning

● Why cleaning?
 Modifications or deletions to objects supersede past log entries
 Need to defrag non-live data to free contiguous space
 2TB disk fills in < 6 hours at 100MB/s
 Want to bound recovery time

● Cleaning isn’t free
 In traditional LFS:

●Read in segments, pack live data, write out again
●Goal: Efficiently reclaim contiguous regions of disk

 Cost/benefit balance - carefully choose segments to clean

 RAMCloud affords us a twist on the LFS story

19

Log Cleaning, cont’d

● RAMCloud master maintains all data in RAM
 Segments can be cleaned without first reading from disk
 Removes >= 1/2 of the cleaning cost

● RAM-based Log
 Objects stored in log format in main memory
 Precisely reflects log stored on disks
 Backups simply synchronise segment writes

20

Finding a Balance

● We need data durability, but don’t want:
 to spend a lot of money
 to sacrifice (too much) performance
 recovery to take too long

● So, what do we want?
 RPCs that modify data complete in near RAM speed
 Reasonable sustained write rate for busy cluster
 Very high burst write rates for loaded servers

● Logging falls out naturally
 All stable storage prefers sequential I/O

21

Statistical Multiplexing

● Aggregate Disk Bandwidth
 N servers, K backups per object, 100MB/s writes (ignore cleaning)
 100N/K MB/s total bandwidth for object writes
 N = 1,000, K = 3 => ~33GB/s

● Worst case Performance
 33MB/s/server (before log cleaning overheads)

● 33,000 1K objects/second/server at 2 network RTTs

● Best case well above 10GigE rates
 Servers should make use of idle bandwidth for fast write bursts

● Spread log segments across all backups (benefit: helps recovery)

22

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Obj

Backup X

Backup Y

Segment Buffers{

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Obj

Backup X

Backup Y

Segment Buffers{

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Obj

Backup X

Backup Y

Segment Buffers{

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Obj

Backup X

Backup Y

Obj

Segment Buffers{

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Obj

Backup X

Backup Y

Obj

Obj

Segment Buffers{

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Hash Table

h(tableid, objid)

Obj

Backup X

Backup Y

Obj

Obj

Segment Buffers{

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Hash Table

h(tableid, objid)

Obj

Backup X

Backup Y

Obj

Obj

Segment Buffers{

LFS: The Next Generation

● LFS Premise:
 RAM = cheap read cache, so worry about writes
 Make writes sequential for maximum write I/O

24

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

Appending:

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X

Appending:

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X S 0

Appending:

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X S 0

Appending:
...

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X S 0

Appending:
...

...

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X S 0

Appending:

● Problem:
 Data gets deleted, updated, etc
 Segments accumulate old data
 Must clean segments for future appends

...

...

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X S 0

Cleaning:

● Problem:
 Data gets deleted, updated, etc
 Segments accumulate old data
 Must clean segments for future appends

...

...

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X S 0

Cleaning:

● Problem:
 Data gets deleted, updated, etc
 Segments accumulate old data
 Must clean segments for future appends

...

...

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

Cleaning:

● Problem:
 Data gets deleted, updated, etc
 Segments accumulate old data
 Must clean segments for future appends

...

...

