
1

Logging & Data
Durability

Steve Rumble
Stanford University

April 1, 2010

Outline

● Need for Durable, Non-volatile Storage
● Buffered Logging
● Log-structured Memory
● Locating Log Objects
● Data Replication (for durability)
● Spreading Writes (for performance)
● Performance and Buffering Expectations

● Next talk will discuss recovery from durable storage

2

Data Durability

● We need durability
 Servers will fail
 The power will go out
 Failures will increase in frequency as we scale

● Assume they’re common, deal with them quickly
 Murphy’s Law is out to get us

● We need to replicate main memory contents
 Can’t use RAM

● Assumes we can keep RAM powered
● Too expensive: increase cost/decrease capacity by replication factor

 Can’t use local disk
● Too slow to recover
●What if the box dies?

3

Cluster Approach to Durability

● Problem: Make writes sufficiently durable while:
 Not horribly affecting latency
 Not artificially limiting aggregate write bandwidth

● Guiding Principles
 All backup devices favour sequential I/O

● Buffer writes
 All backup devices have significantly higher latency

● Buffer and asynchronously commit
 We are assuming lots (10s to 1,000s) of servers at our disposal

● Buffer on other servers

● Our Solution: Buffered Logging
 Each server logs updates in memory
 RPCs return when log updates reflected in k backup memories
 Backup servers asynchronously flush log updates to disk
 Every master server is also a backup 4

Buffered Logging

● All RAMCloud objects are logged
 Each server maintains one log (for now)
 Log modifications synchronised with backups

● Backups buffer fixed-sized pieces of the Log
●One log/server, k replicas implies 2k buffers per backup

 k replicas/master, double buffering for write & flush

5

DRAM

disk

DRAM

disk

Storage
Servers

write

log

async, batch
DRAM

disk

log

Server YServer X Server Z

Log-Structured Memory

● Problem: Server must keep track of the Log
 E.g., need to do cleaning

● Solution: Make server memory log-structured
 Memory layout matches disk layout
 Simplicity Benefit: Unify disk-based storage and memory allocation

●Handle RAM fragmentation while boosting write rates

● Drawbacks
 Couples disk utilisation with memory

● Log-structured Memory is LFS to the extreme
 RAM “caches” everything
 Disks are read only on failure
 Cleaning requires no disk reads! (avoids 1/2 of cleaning overhead) 6

Locating Objects in the Log

● How do we find objects in the main-memory Log?
 Hash table lookup
 Two cache misses from (tableId, objectId) to object

7

Log

Hash Table

h(tableid, objid)

Locating Objects in the Log

● How do we find objects in the main-memory Log?
 Hash table lookup
 Two cache misses from (tableId, objectId) to object

7

Log

Hash Table

h(tableid, objid)

Locating Objects in the Log

● How do we find objects in the main-memory Log?
 Hash table lookup
 Two cache misses from (tableId, objectId) to object

7

Log

Hash Table

h(tableid, objid)

Scattering Writes

● Problem: Need fast recovery
 Writing log updates to same k backups not good enough
 k * 100MB/s I/O bandwidth insufficient for quick recovery

● Solution: Scatter log across many spindles
 Don’t fix the k backup hosts for each master
 Fill buffers on k backups, then move on
 < 1 second to read 64GB from 1,000 disks

● For each new segment, choose a new set of k
 Find additional backups with idle bandwidth
 Can accommodate more writes immediately
 Example mechanism:

●Cache potential backup lists (obtained from cluster coordinator)
●Choose 2k of them as potentials and query to find the best k 8

Scattering Writes, cont’d

● Scattering writes is like statistical multiplexing
 Lets us supports large write bursts
 Servers make use of idle disk bandwidth throughout cluster

●Recall the full bisection bandwidth assumption

● Consider 1,000 node cluster:
 One 100MB/s disk per node
 Even with overheads, aggregate bandwidth in 10’s of GB/s range
 Best case well above 10GigE rates & our single server goals

● But what about worst case performance?
 Worst case: congestion at all backups

● Every node bound by backup disk I/O

9

Expected Sustained Write Rate

● Only 2.5% of the read rate!
 About 25,000 1KB objects/server/second

● Why? Write overheads:
 Log cleaning
 k replicas (every server is a backup)

● At best 1/k’th as much throughput as reads

● k = 2, log cleaning overhead 100%
 100MBs / 2k = 25MB/sec for writes
 25,000 1KB writes/sec
 Recall per-server read estimate: 1M 1KB reads/sec

● 1,000,000/25,000 = 2.5%

10

Boosting Writes

● 2.5% is conservative

● We can:
 Compress log buffers before flushing
 Add disks
 Do pre-flush cleaning (only flush live data)

● 3 disks/server, 2x compression, less cleaner overhead
 > 15% of read rate seems reasonable
 Flash SSDs would add another 2-3x today

● Need modest capacity devices with high bandwidth
 Prefer cheap bandwidth over cheap capacity
 Latency less important

11

How Big are the Buffers?

● Amortising overhead means sizing buffers properly

 Example: Want 90% utilisation
● Assume average overhead of 8ms per operation (seek + 1/2 rotation)
● 90% bandwidth => 72ms of data access for every op

 72ms at 100MB/s => 7.2MB per op

 Generalised:

● Buffering_Needed = Latency x x Disk_Bandwidth

12

Utilisation
1 - Utilisation

How Big are the Buffers? (cont’d)

● Buffering needed as function of desired utilisation

 ~7-8MB buffers means:
● 90% utilisation with 8ms, 100MB/s HD
● 96% utilisation with 2ms, 140MB/s 15K rpm server HD
● 99.7% utilisation with 100us, 250MB/s flash

13

0

4

8

12

16

5 15 25 35 45 55 65 75 85 95
% Disk Bandwidth Utilisation

Buffer
Size
(MB)

Generic HD (8ms, 100MB/s) Server HD (2ms, 140MB/s)
Flash SSD (100us, 250MB/s)

What About Flash?

● Latency too high for primary store, but what about
backup?

● Could be promising
 Flash is currently modest-sized and high bandwidth

● However
 SSDs are still very expensive
 Performance expectations are complex

● Our techniques should work well with flash
 Locality is still important, so buffered approach fits
 And may obviate complex FTLs

14

Conclusion & Discussion

● Conclusion
 RAMCloud uses Log-structured memory

● Each server has a Log
● Each log is backed up to k other servers’ disks
● All RAMCloud objects live in the Log
● Buffering is crucial due to non-volatile storage properties:

 Sequential I/O bias
 Access latency

●Memory structure matches disk structure
 Logs are distributed across the cluster, enabling:

● Fast recovery
●High burst write rates

● Possible Discussion Topics
 What disks are used in data centers today? Cheap IDE, SCSI?
 How does flash perform now? What can we expect in the future?
 Alternatives to logging? Will flash shortly obviate buffering?

15

End of the Line

● Do not pass Go.

16

Storing to Disk

● How do backups store data on disk?
 I.e. how are main memory write buffers drained?

● Considerations
 Disks become the system’s write rate bottleneck
 Locality is crucial for performance

●Need very fast writes to drain backup write buffers
●Need efficient reads to achieve fast recovery

 Need to play standard filesystem games
● Amortise seeks and rotational latency => batched writes

17

LFS, Revisited

● Make the main memory object store log-structured
 Objects live in the log at all times

● What is a Log?
 A set of (1 + M + N) segments:

●One “head”
 appends go to it

●M segments are free
 future heads; no live data

●N segments are in use
 may contain live data

● The Log simply:
 appends to the head segment (and synchronises with backups)
 Tries to maintain free segments for future appends

18

Log Cleaning

● Why cleaning?
 Modifications or deletions to objects supersede past log entries
 Need to defrag non-live data to free contiguous space
 2TB disk fills in < 6 hours at 100MB/s
 Want to bound recovery time

● Cleaning isn’t free
 In traditional LFS:

●Read in segments, pack live data, write out again
●Goal: Efficiently reclaim contiguous regions of disk

 Cost/benefit balance - carefully choose segments to clean

 RAMCloud affords us a twist on the LFS story

19

Log Cleaning, cont’d

● RAMCloud master maintains all data in RAM
 Segments can be cleaned without first reading from disk
 Removes >= 1/2 of the cleaning cost

● RAM-based Log
 Objects stored in log format in main memory
 Precisely reflects log stored on disks
 Backups simply synchronise segment writes

20

Finding a Balance

● We need data durability, but don’t want:
 to spend a lot of money
 to sacrifice (too much) performance
 recovery to take too long

● So, what do we want?
 RPCs that modify data complete in near RAM speed
 Reasonable sustained write rate for busy cluster
 Very high burst write rates for loaded servers

● Logging falls out naturally
 All stable storage prefers sequential I/O

21

Statistical Multiplexing

● Aggregate Disk Bandwidth
 N servers, K backups per object, 100MB/s writes (ignore cleaning)
 100N/K MB/s total bandwidth for object writes
 N = 1,000, K = 3 => ~33GB/s

● Worst case Performance
 33MB/s/server (before log cleaning overheads)

● 33,000 1K objects/second/server at 2 network RTTs

● Best case well above 10GigE rates
 Servers should make use of idle bandwidth for fast write bursts

● Spread log segments across all backups (benefit: helps recovery)

22

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Obj

Backup X

Backup Y

Segment Buffers{

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Obj

Backup X

Backup Y

Segment Buffers{

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Obj

Backup X

Backup Y

Segment Buffers{

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Obj

Backup X

Backup Y

Obj

Segment Buffers{

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Obj

Backup X

Backup Y

Obj

Obj

Segment Buffers{

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Hash Table

h(tableid, objid)

Obj

Backup X

Backup Y

Obj

Obj

Segment Buffers{

● Write
 Append to log, distribute to backups, update hash table

...

...

Servicing Requests, cont’d

23

Log

Hash Table

h(tableid, objid)

Obj

Backup X

Backup Y

Obj

Obj

Segment Buffers{

LFS: The Next Generation

● LFS Premise:
 RAM = cheap read cache, so worry about writes
 Make writes sequential for maximum write I/O

24

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

Appending:

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X

Appending:

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X S 0

Appending:

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X S 0

Appending:
...

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X S 0

Appending:
...

...

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X S 0

Appending:

● Problem:
 Data gets deleted, updated, etc
 Segments accumulate old data
 Must clean segments for future appends

...

...

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X S 0

Cleaning:

● Problem:
 Data gets deleted, updated, etc
 Segments accumulate old data
 Must clean segments for future appends

...

...

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

S X S 0

Cleaning:

● Problem:
 Data gets deleted, updated, etc
 Segments accumulate old data
 Must clean segments for future appends

...

...

● Logical log formed with fixed-sized segments

Segments & Cleaning

25

...

Segment X + 2

Segment X + 1

Segment X

Segment 1

Segment 0

Memory
0 GB

64 GB

Log

Cleaning:

● Problem:
 Data gets deleted, updated, etc
 Segments accumulate old data
 Must clean segments for future appends

...

...

