
1

Data Durability
Steve Rumble

Stanford University

RAMCloud Design Review April 1, 2010

Introduction

! Want durability with single copy in RAM
! Use disks for replicated backup copies (cheap, non-volatile)

! Natural to use a logging approach
! Exploit high sequential I/O bandwidth
! Avoid high access latencies

! Scatter backups across cluster
! Fast recovery
! High burst write bandwidth

! Next talk will discuss recovery from durable storage

2

Data Durability

! We need durability
! Servers will fail
! The power will go out
! Failures will be frequent

! System always in recovery?

! We need to replicate main memory contents
! RAM is not feasible

!Highest performance, but:
! Assumes we can keep all RAM powered at all times
! Too expensive: increases cost per bit by replication factor

! Local disks are not feasible
!Require synchronous writes (latency much too high!)
! Too slow to recover (single spindle)
!What if the box dies?

3

Buffered Logging

! Each server maintains a log of updates to its objects
! We call the owner server a “master”

! Masters’ log updates are sent to R backups
! RPCs return when backups have updates buffered in RAM
! Backups batch and write to disk asynchronously
! Assume for now each master always uses same R backups

! Each master is also a backup for other servers

4

DRAM

disk

DRAM

disk

Storage
Servers

writelog

async, batch
DRAM

disk

log

MasterBackup 1 Backup 2

Backup Buffer Volatility

! Problem: Backup buffers are in volatile DRAM
! Vulnerable until disk flush

! Solution 1: Synchronous disk writes
! 2,000 - 8,000 microsecond latency!
! No write batching => very low bandwidth (< 1% of sequential I/O)

! Solution 2: Synchronous flash SSD writes
! ~50 - 100 microsecond latency, still a big non-sequential I/O penalty

! Solution 3: Reduce consistency guarantees
! “Sorry, we lost your data. Deal with it.”

! Solution 4: Battery Backups
! Batteries provide enough power to flush buffers 5

DRAM

disk

X

Backup Buffer Volatility

! Problem: Backup buffers are in volatile DRAM
! Vulnerable until disk flush

! Solution 1: Synchronous disk writes
! 2,000 - 8,000 microsecond latency!
! No write batching => very low bandwidth (< 1% of sequential I/O)

! Solution 2: Synchronous flash SSD writes
! ~50 - 100 microsecond latency, still a big non-sequential I/O penalty

! Solution 3: Reduce consistency guarantees
! “Sorry, we lost your data. Deal with it.”

! Solution 4: Battery Backups
! Batteries provide enough power to flush buffers 5

DRAM

disk

X

Log-Structured Backups

! Problem: Need fast write rates, but have disks
! RAMCloud is about performance, after all

! Solution: Log-structure on disks
! Exploits sequential I/O
! But we need to do cleaning

! What about log cleaning overheads?
! All data is in RAM, so no need to re-read for cleaning

! 50% of the overhead immediately out the window
! Don’t need to use disks efficiently

!Worry about RAM utilisation
! Assume backups have capacity to spare.

6

Log-Structured Memory

! Problem: Server must keep track of the Log
! I.e. we need to do cleaning

! Solution: Make server memory log-structured
! Memory layout matches disk layout
! Simplicity Benefit: Unify disk-based storage and memory allocation

!Clean memory and disk simultaneously

! Hey, wait! This couples disk and memory utilisation!
! Means more aggressive cleaning to avoid wasted memory
! No reason this cannot be decoupled in the future (we expect to)
! Primarily an initial design simplification

7

Locating Objects in the Log

! How do we find objects in the main-memory Log?
! Hash table lookup
! Two cache misses from (tableId, objectId) to object

! Extremely fast, despite complex memory management scheme

8

Log

Hash Table

h(tableid, objid)

Locating Objects in the Log

! How do we find objects in the main-memory Log?
! Hash table lookup
! Two cache misses from (tableId, objectId) to object

! Extremely fast, despite complex memory management scheme

8

Log

Hash Table

h(tableid, objid)

Locating Objects in the Log

! How do we find objects in the main-memory Log?
! Hash table lookup
! Two cache misses from (tableId, objectId) to object

! Extremely fast, despite complex memory management scheme

8

Log

Hash Table

h(tableid, objid)

Scattering Writes

! Problem: Need fast recovery (1-2 seconds)
! If R = 2, at least 5 minutes to pull 64GB from disk!

!R * 100MB/s I/O bandwidth insufficient for quick recovery
! Want no noticeable availability lapses on failure
! Writing log updates to same R backups not good enough

! Solution: Scatter log across many spindles
! Don’t fix the R backup hosts for each master
! Fill buffers on R backups, then move on
! < 1 second to read 64GB from 1,000 disks (0.65s @ 100MB/s/disk)

! For each buffer filled, choose a new set of R
! Find additional backups with idle bandwidth
! Can accommodate more writes immediately
! Example mechanism:

!Cache potential backup lists (obtained from cluster coordinator)
!Choose 2R of them as potentials and query to find the best R 9

Expected Sustained Write Rate

! So, what write rate can we sustain?
! Only 2.5% of the read rate!

! About 25,000 1KB objects/server/second
!Why?

! 10GigE: 1M 1KB objects/second => 2.5% of read rate
! 1,000,000/25,000, or 40:1 read/write ratio!

10

Raw Disk Bandwidth 100 MB/s
1KB Objects 100,000 objs/sec

Replica Overhead (R = 2) 50,000 objs/sec
100% Cleaning Overhead 25,000 objs/sec

Boosting Write Rates

! But 2.5% is conservative

! Improvements:

! Need modest capacity devices with high bandwidth
! Prefer cheap bandwidth over cheap capacity
! Latency less important
! What about flash? We’ll get to that later...

11

Compression 1.5 - 3x
Additional Disks 2 - 4x

Total 3 - 12x
Write Percentage 7.5% - 30%

High Burst Bandwidth

! 7.5-30% is a worst-case number
! Only if many masters are saturated with writes

! Scattering writes permits large write bursts
! Servers make use of idle disk bandwidth throughout cluster

! Full bisection bandwidth assumption
! Statistical multiplexing of cluster aggregate I/O

! Network interface becomes the bottleneck
! 4-15 low write-load backup servers for each write-saturated master

! 10GigE permits about 1,000,000 1KB objects/second
! About 10 * R disks’ worth of sequential I/O bandwidth (100MB/s/disk)
! 20-30 servers for reasonable values of R
! Divide by 2-6x after compression and additional disks/server

12

How Big are the Buffers?

! Amortising overhead means sufficient buffering
! But how big is “sufficient”? 7.2MB

! Example: Want 90% utilisation
!HDD Parameters:

! 100MB/s sequential I/O
! 8ms access time (seek + rotational latency)

! 90% bandwidth => 72ms of data transfer for every op (8ms overhead)
! 72ms at 100MB/s => 7.2MB transferred per op

!Generalised:

! Buffering_Needed = Latency x x Disk_Bandwidth

13

Utilisation
1 - Utilisation

How Big are the Buffers? (cont’d)

! It doesn’t take much...
! If 8MB/buffer and R = 5:

! 2R * 8MB = 80MB total per server (0.12% of 64GB!)
! And it only gets better! 90% utilisation means:

! 2.5MB buffers for server disks (2ms, 140MB/s)
! 200KB buffers for flash SSDs (100usec, 250MB/s)

14

0

4

8

12

16

5 15 25 35 45 55 65 75 85 95
% Device Bandwidth Utilisation

Buffer
Size
(MB)

Generic HD (8ms, 100MB/s) Server HD (2ms, 140MB/s) Flash SSD (100us, 250MB/s)

What About Flash?

! Latency too high for primary store, but for backup?
! Flash is currently modest-sized and high bandwidth

! ~50% read/write ratio achievable with SSDs.
! 2-3x HDD bandwidth (Recall 7.5-30% ratio for HDDs)
!Without multicast to backups, 50% is the best we can hope for if R = 2

! However
! SSDs are still very expensive
! Insufficient write/erase cycles - 10 month wear out!

!Common figures: 100k cycles for SLC, 10k for MLC
! 10 months to reach 100k cycles at peak I/O (64GB flash at 250MB/s)

! Performance expectations are complex (FTL)

! Our techniques should work well with flash
! Locality is still important, so buffered approach fits
! And may obviate complex FTLs

15

Conclusion & Discussion

! Conclusion
! Durability with one copy in RAM
! Logging approach for disk I/O utilisation
! Backups scattered across cluster for recovery and bursty load

! Possible Discussion Topics
! What read/write ratios should we expect?
! How reasonable is the per-server battery backup assumption?

16

