

Mendel Rosenblum

Stanford University

Talk Agenda

Present assumptions we are making in RAMCloud

- Infrastructure for data centers 5 years in future
 - Hardware and Workload assumptions

• Elicit feedback

- Unconscious assumptions
- Hopelessly wrong assumptions

• Disclaimer: Goal #1 of RAMCloud is research

- Research agenda is pushing latency and scale
- Significant risk is OK
- Version 1.0 design decisions (OK to leave stuff out, oversimplify)

Network Assumptions

Assumption: Network latency going down

- Microsecond latencies require low latency switches & NICs
 - Encouraging: Arista: 0.6 µs/switch
 - Lots of discouraging
 - Chicken and egg problem

Assumption: No significant oversubscription

- Scale-based solutions require high bisection bandwidth
 - Example: Recovery
- Actively engaging networking researchers and industry partners

Vote: Are we crazy?

April 1, 2010

Workload Assumptions

- Less than 2 second recovery time is fast enough
- Applications will tolerate 2 second hiccups

Vote: Will enough important applications tolerate 2 second pauses when failures happen?

RAMCloud Assumptions

Server Assumptions

- Assumption: Simultaneous failures of all servers unlikely (i.e. all DRAMs can't lose contents)
 - Require Uninterruptible power supply
 - Example: Google's battery backup per machine
 - Need only enough to transfer write buffers to non-volatile storage
- Want to avoid non-volatile latency in write request path

Vote: What do you think?

RAMCloud Assumptions

Assumption: Latency is goodness

• High latency is a major application inhibitor

- Increases complexity, decreases innovation
- RAMCloud will enable new applications

• Low latency is underappreciated

Users won't ask for it but will love it

Vote: Are we right?

Low Latency: Stronger Consistency?

- Might be able to help with scaling challenges
 - Example: Durability, update multiple in-memory replicas
- Cost of consistency rises with transaction overlap:
 - **O** ~ **R*****D**
 - **O** = # overlapping transactions
 - **R** = arrival rate of new transactions
 - D = duration of each transaction
- R increases with system scale
 - Eventually, scale makes consistency unaffordable
- But, D decreases with lower latency
 - Stronger consistency affordable at larger scale
 - Is this phenomenon strong enough to matter?

April 1, 2010

RAMCloud Assumptions

Slide 7

Locality Assumptions

- Locality is getting harder to find and exploit
 - Example: Facebook usage
- Flat model rather than tiered storage

Vote: Right?

Read/Write Ratio Assumption

- Read request dominate writes
- Postulate: Fast reads will cause applications to use more information leading to more reads than writes

Vote: What do you think?

Replication Assumptions

- Replication isn't needed for performance
- High throughput and load balancing eliminates the need for object replication
- Few applications need more than1M ops/second to a single object

Vote: Right?

WAN Replication Assumption

- There are interesting applications that don't require cross data center replication
 - Speed of light not our friend

Transaction Assumption

- Multi-object update support is required
 - Distributed applications need support for concurrent accesses

Security assumptions

• Threat model

- RAMCloud servers and network physically secure
 - Don't need encryption on RPCs, DoS defense, etc.

Data Model Assumption

Simple table/object with indexing sufficient

- Dictated by speed
- SQL/relational model can be built on top

Thank you

April 1, 2010

RAMCloud Assumptions

Slide 15