
Transactions in RAMCloud

Diego Ongaro

Stanford University

RAMCloud Design Review
April 1, 2010

1

Where’s my CMPXCHG?

We can’t even increment a value safely with our poor API.

Example: Unsafe Increment

data = ramcloud.read(table, 10)

ramcloud.write(table, 10, data + 1)

Problem: Race condition

I If you’re surprised, Professor Ousterhout is teaching
the introductory operating systems course this quarter.

2

What primitives do apps need for concurrency?

Hypothesis:
If latency is sufficiently low, can provide a high level of consistency

I Can push complex object operations to apps

I A lot of other NoSQL systems don’t do this

Outline

1. Conditional operations for single objects

2. Transactions for multiple objects

3

RAMCloud’s Conditional API

I Each object has a monotonically increasing version number

I Predicates specify whether an object must exist
and whether it must have a given version number

read(table ID, object ID, predicates) → data, version

write(table ID, object ID, predicates, data) → version

delete(table ID, object ID, predicates)

Example: Atomic Increment

label .again:

data, v1 = ramcloud.read(table, 10, None)

try:

v2 = ramcloud.write(table, 10, Pred(version=v1), data + 1)

except: # Someone else changed the object first!

goto .again

4

Transactions Are a Useful Building Block

I Apps may need to simultaneously update multiple objects
I Transferring money across users
I Updating a shared data structure

I Transactions make this easy (well, relatively)
I Apps can maintain database invariants

I Alternatives are too difficult
I Locking isn’t an option – we can’t detect when apps crash
I Expired leases (locks with timeouts) are difficult to clean
I Lockless data structures are tricky

5

Optimistic Concurrency Control

I Transactions proceed without locking

I During commit, make sure the objects read have not changed

We expect few conflicts:

I Writes are rare
I Transactions are rarer

I Some apps won’t need them
I Most writes can use conditional API

I Conflicts are rarer yet

I High speed ⇒ fewer conflicts

6

Optimistic Transactions API
Minitransaction – packaged set of conditional operations
to execute atomically

I Modeled after Sinfonia

Example: Move $20 from account 1 to account 2

label .again:

tx = ramcloud.Transaction()

d1, v1 = tx.read(ACC, 1)

tx.write(ACC, 1, d1 - 20)

d2, v2 = tx.read(ACC, 2)

tx.write(ACC, 2, d2 + 20)

try:

tx.commit()

except:

goto .again

Minitransaction

Object Pred Operation

ACC: 1 v1 write(d1 − 20)
ACC: 2 v2 write(d2 + 20)

7

Optimistic Transactions API
Minitransaction – packaged set of conditional operations
to execute atomically

I Modeled after Sinfonia

Example: Move $20 from account 1 to account 2

label .again:

tx = ramcloud.Transaction()

d1, v1 = tx.read(ACC, 1)

tx.write(ACC, 1, d1 - 20)

d2, v2 = tx.read(ACC, 2)

tx.write(ACC, 2, d2 + 20)

try:

tx.commit()

except:

goto .again

Minitransaction

Object Pred Operation

ACC: 1 v1 write(d1 − 20)
ACC: 2 v2 write(d2 + 20)

7

Optimistic Transactions API
Minitransaction – packaged set of conditional operations
to execute atomically

I Modeled after Sinfonia

Example: Move $20 from account 1 to account 2

label .again:

tx = ramcloud.Transaction()

d1, v1 = tx.read(ACC, 1)

tx.write(ACC, 1, d1 - 20)

d2, v2 = tx.read(ACC, 2)

tx.write(ACC, 2, d2 + 20)

try:

tx.commit()

except:

goto .again

Minitransaction

Object Pred Operation
ACC: 1 v1

write(d1 − 20)
ACC: 2 v2 write(d2 + 20)

7

Optimistic Transactions API
Minitransaction – packaged set of conditional operations
to execute atomically

I Modeled after Sinfonia

Example: Move $20 from account 1 to account 2

label .again:

tx = ramcloud.Transaction()

d1, v1 = tx.read(ACC, 1)

tx.write(ACC, 1, d1 - 20)

d2, v2 = tx.read(ACC, 2)

tx.write(ACC, 2, d2 + 20)

try:

tx.commit()

except:

goto .again

Minitransaction

Object Pred Operation
ACC: 1 v1 write(d1 − 20)

ACC: 2 v2 write(d2 + 20)

7

Optimistic Transactions API
Minitransaction – packaged set of conditional operations
to execute atomically

I Modeled after Sinfonia

Example: Move $20 from account 1 to account 2

label .again:

tx = ramcloud.Transaction()

d1, v1 = tx.read(ACC, 1)

tx.write(ACC, 1, d1 - 20)

d2, v2 = tx.read(ACC, 2)

tx.write(ACC, 2, d2 + 20)

try:

tx.commit()

except:

goto .again

Minitransaction

Object Pred Operation
ACC: 1 v1 write(d1 − 20)
ACC: 2 v2

write(d2 + 20)

7

Optimistic Transactions API
Minitransaction – packaged set of conditional operations
to execute atomically

I Modeled after Sinfonia

Example: Move $20 from account 1 to account 2

label .again:

tx = ramcloud.Transaction()

d1, v1 = tx.read(ACC, 1)

tx.write(ACC, 1, d1 - 20)

d2, v2 = tx.read(ACC, 2)

tx.write(ACC, 2, d2 + 20)

try:

tx.commit()

except:

goto .again

Minitransaction

Object Pred Operation
ACC: 1 v1 write(d1 − 20)
ACC: 2 v2 write(d2 + 20)

7

Optimistic Transactions API
Minitransaction – packaged set of conditional operations
to execute atomically

I Modeled after Sinfonia

Example: Move $20 from account 1 to account 2

label .again:

tx = ramcloud.Transaction()

d1, v1 = tx.read(ACC, 1)

tx.write(ACC, 1, d1 - 20)

d2, v2 = tx.read(ACC, 2)

tx.write(ACC, 2, d2 + 20)

try:

tx.commit()

except:

goto .again

Minitransaction

Object Pred Operation
ACC: 1 v1 write(d1 − 20)
ACC: 2 v2 write(d2 + 20)

7

Approaches

1. Client-Side Transactions
I No server modifications required – built on the conditional API

2. Two-Phase Commit (2PC)
I Better performance

8

Client-Side Transactions
Idea: Put the values together into a single object which we can
update atomically.

1. Mask accounts to super-object t (in any order)

I t, if it exists, in effect contains all of its masked objects

2. Fill in t – this is the commit
3. Write back values, unmask accounts (in any order)
4. Delete t

Transferring $20 from a1 to a2:

accounts tx

$70a1:

$12a2:

Optimization

I Server-side changes for cheap masking
I Saves rewriting the data to the log in step 1

9

Client-Side Transactions
Idea: Put the values together into a single object which we can
update atomically.

1. Mask accounts to super-object t (in any order)
I t, if it exists, in effect contains all of its masked objects

2. Fill in t – this is the commit
3. Write back values, unmask accounts (in any order)
4. Delete t

Transferring $20 from a1 to a2:

accounts tx

see t | $70a1:

$12a2:

t:

masked

Optimization

I Server-side changes for cheap masking
I Saves rewriting the data to the log in step 1

9

Client-Side Transactions
Idea: Put the values together into a single object which we can
update atomically.

1. Mask accounts to super-object t (in any order)
I t, if it exists, in effect contains all of its masked objects

2. Fill in t – this is the commit
3. Write back values, unmask accounts (in any order)
4. Delete t

Transferring $20 from a1 to a2:

accounts tx

see t | $70a1:

see t | $12a2:

t:

masked

masked

Optimization

I Server-side changes for cheap masking
I Saves rewriting the data to the log in step 1

9

Client-Side Transactions
Idea: Put the values together into a single object which we can
update atomically.

1. Mask accounts to super-object t (in any order)
I t, if it exists, in effect contains all of its masked objects

2. Fill in t – this is the commit

3. Write back values, unmask accounts (in any order)
4. Delete t

Transferring $20 from a1 to a2:

accounts tx

see t | $70a1:

see t | $12a2:

a1: $50
a2: $32

t:

masked

masked

Optimization

I Server-side changes for cheap masking
I Saves rewriting the data to the log in step 1

9

Client-Side Transactions
Idea: Put the values together into a single object which we can
update atomically.

1. Mask accounts to super-object t (in any order)
I t, if it exists, in effect contains all of its masked objects

2. Fill in t – this is the commit
3. Write back values, unmask accounts (in any order)

4. Delete t

Transferring $20 from a1 to a2:

accounts tx

see t | $70a1:

$32a2:

a1: $50
a2: $32

t:

masked

Optimization

I Server-side changes for cheap masking
I Saves rewriting the data to the log in step 1

9

Client-Side Transactions
Idea: Put the values together into a single object which we can
update atomically.

1. Mask accounts to super-object t (in any order)
I t, if it exists, in effect contains all of its masked objects

2. Fill in t – this is the commit
3. Write back values, unmask accounts (in any order)

4. Delete t

Transferring $20 from a1 to a2:

accounts tx

$50a1:

$32a2:

a1: $50
a2: $32

t:

Optimization

I Server-side changes for cheap masking
I Saves rewriting the data to the log in step 1

9

Client-Side Transactions
Idea: Put the values together into a single object which we can
update atomically.

1. Mask accounts to super-object t (in any order)
I t, if it exists, in effect contains all of its masked objects

2. Fill in t – this is the commit
3. Write back values, unmask accounts (in any order)
4. Delete t

Transferring $20 from a1 to a2:

accounts tx

$50a1:

$32a2:

Optimization

I Server-side changes for cheap masking
I Saves rewriting the data to the log in step 1

9

Client-Side Transactions
Idea: Put the values together into a single object which we can
update atomically.

1. Mask accounts to super-object t (in any order)
I t, if it exists, in effect contains all of its masked objects

2. Fill in t – this is the commit
3. Write back values, unmask accounts (in any order)
4. Delete t

Transferring $20 from a1 to a2:

accounts tx

$50a1:

$32a2:

Optimization

I Server-side changes for cheap masking
I Saves rewriting the data to the log in step 1

9

Two Phase Commit
1. App sends MT to transaction coordinator (a participant)

2. Coord logs participant list, sends MT rows to participants
3. Participants lock objects, log MT rows, send vote to coord
4. Coordinator logs decision, sends to participants and app
5. Participants commit MT rows, send ack to coordinator
6. Coordinator cleans log entries

AppApp TX coord

Participant 1

Participant 2

MT

Optimizations

I App acts as transaction coordinator
I App/coordinator does not log
I Participant list replicated on all participants instead

10

Two Phase Commit
1. App sends MT to transaction coordinator (a participant)
2. Coord logs participant list, sends MT rows to participants

3. Participants lock objects, log MT rows, send vote to coord
4. Coordinator logs decision, sends to participants and app
5. Participants commit MT rows, send ack to coordinator
6. Coordinator cleans log entries

App TX coordTX coord

Participant 1

Participant 2

MT rows

MT rows

Optimizations

I App acts as transaction coordinator
I App/coordinator does not log
I Participant list replicated on all participants instead

10

Two Phase Commit
1. App sends MT to transaction coordinator (a participant)
2. Coord logs participant list, sends MT rows to participants
3. Participants lock objects, log MT rows, send vote to coord

4. Coordinator logs decision, sends to participants and app
5. Participants commit MT rows, send ack to coordinator
6. Coordinator cleans log entries

App TX coord

Participant 1Participant 1

Participant 2Participant 2

OK

OK

Optimizations

I App acts as transaction coordinator
I App/coordinator does not log
I Participant list replicated on all participants instead

10

Two Phase Commit
1. App sends MT to transaction coordinator (a participant)
2. Coord logs participant list, sends MT rows to participants
3. Participants lock objects, log MT rows, send vote to coord
4. Coordinator logs decision, sends to participants and app

5. Participants commit MT rows, send ack to coordinator
6. Coordinator cleans log entries

App TX coordTX coord

Participant 1

Participant 2

commit

commit

committed

Optimizations

I App acts as transaction coordinator
I App/coordinator does not log
I Participant list replicated on all participants instead

10

Two Phase Commit
1. App sends MT to transaction coordinator (a participant)
2. Coord logs participant list, sends MT rows to participants
3. Participants lock objects, log MT rows, send vote to coord
4. Coordinator logs decision, sends to participants and app
5. Participants commit MT rows, send ack to coordinator

6. Coordinator cleans log entries

App TX coord

Participant 1Participant 1

Participant 2Participant 2

ACK

ACK

Optimizations

I App acts as transaction coordinator
I App/coordinator does not log
I Participant list replicated on all participants instead

10

Two Phase Commit
1. App sends MT to transaction coordinator (a participant)
2. Coord logs participant list, sends MT rows to participants
3. Participants lock objects, log MT rows, send vote to coord
4. Coordinator logs decision, sends to participants and app
5. Participants commit MT rows, send ack to coordinator
6. Coordinator cleans log entries

App TX coordTX coord

Participant 1

Participant 2

Optimizations

I App acts as transaction coordinator
I App/coordinator does not log
I Participant list replicated on all participants instead

10

Two Phase Commit
1. App sends MT to transaction coordinator (a participant)
2. Coord logs participant list, sends MT rows to participants
3. Participants lock objects, log MT rows, send vote to coord
4. Coordinator logs decision, sends to participants and app
5. Participants commit MT rows, send ack to coordinator
6. Coordinator cleans log entries

App TX coord

Participant 1

Participant 2

Optimizations

I App acts as transaction coordinator
I App/coordinator does not log
I Participant list replicated on all participants instead

10

Client-Side vs 2PC Comparison
Bytes written to the log:

I Client-side: 3x (mask, super-object, write-back)

I Client-side with server mods: 2x (super-object, write-back)

I 2PC flavors: 1x

Serial RPCs for app to resume processing, including log appends:

I Client-side flavors: 4 (mask, super-object)

I 2PC: 5

I 2PC with app coordinating: 2

What’s this hiding?

I Client-side flavors require weak access control
I Apps write back values for others’ crashed transactions

I Complexity

11

Conclusion

I Low latency affords us high consistency

I Conditional API provides atomic ops for a single object
I Optimistic transactions for multiple objects

I Optimized client-side approach about twice as slow as 2PC
I We haven’t decided on an approach, may try both

12

Questions/Comments

Some for the audience:

I Do applications need transactions?

I Are conflicts as rare as we hope?

I Client-side or 2PC?

13

