
Low Latency RPCs

RAMCloud Design Review, April 1, 2010

Aravind Narayanan
Stanford University

1



● Goal: 5-10 µs RPCs

● Experimental result: 11 µs RTT

● Three parts: current sources of latency, experimental 
results, RPC system

Overview

1985 2010 Improvement

CPU Speed

Bandwidth

Latency

12 Mhz 4 Ghz 333 x

10 Mbps 10 Gbps 1000 x

2 ms 500 µs 4 x

2

2



Baseline Performance

● Experiment Setup:
 Intel Xeon - 3.4 Ghz
 Intel 82541GI Gigabit NICs
 Standard Linux Kernel with UDP
 Switches + wire time

● Estimated using a typical data center 
● 10 switches

3

3



Baseline Performance

● Total time: ~ 400 µs
● Main sources of latency:

 Switch + wire time: 200 µs
 NIC: 128 µs
 Kernel: 60 µs
 memcached: 30 µs

4

4



Causes: Data center network time

● Network latency: 150 - 300 µs
 10 - 30 µs per switch, 5 switches each way

● Latest Arista product:
 0.6 µs per switch
 Need cut-through routing,

congestion management

● Hoping for help!
 Not RAMCloud’s goal Switch 

Client Server 

Switch 

Switch Switch 

Switch 

5

5



Causes: NIC Hardware

● Most hardware is designed for throughput, not 
latency

● Interrupt coalescing/throttling: ~ 64 µs one way
 Design the NIC to avoid live lock, and to lower CPU utilization
 Optimize for bandwidth
 Default setting!

6

6



Causes: Software

● Kernel network stack
 Packet takes 15 µs to bubble through the kernel (each way) 
 60 µs of overhead per RTT! 

● Protocol overhead
 TCP is inherently slow

● requires a lot of processing and state
 IP: options may add processing time

● Unnecessary intermediate copies
 From user-space to kernel

● CPU scheduling/preemption
● Context switches

7

7



Radical Experiment

● Part 1: Tune the NIC
 Turn off interrupt coalescing, saving ~ 128 µs
 Poll the NIC with a dedicated core, no interrupts!

● Part 2: Rip out unnecessary layers of software
 Map the NIC directly into user space

● User software can access NIC’s registers and ring buffers
 Eliminate networking layer
 Avoids unnecessary copying
 No kernel/context switching overhead

● Part 3: Eliminate protocol overhead

8

8



NIC Ring Buffers

9

9



Experimental Result

● 11 µs RTT 
● < 1 µs of software overhead
● NIC hardware latency: 1.95 µs x 4
● Future experiment: Test over 10 Gig NICs

10

10



RPC System
● Build a real system

 As fast as weird experimental version?

● Requirements:
 Reliability
 Handles messages larger than 1 frame
 Retain single copy

● From ring buffer to server’s log (on receive)

11

11



RPC System

● The reply is the ACK for most RPCs
 RPCs are so fast that it makes no sense to ACK fragments

● Blast protocol
 Send all fragments of an RPC at once, without waiting for ACK
 Selective NACKs
 Too slow to retransmit the whole packet

12

12



Threading model

● Increased parallelism: 
 More cores per chip 
 More threads per core

● Use multiple threads to increase throughput
 Associated dispatching/synchronization overheads

● On server, how to distribute requests among 
available worker threads?

● Several possible designs

13

13

file://localhost/Users/Ram/Documents/April%20Fools%20Day%20Talk/threading%202.ezdraw
file://localhost/Users/Ram/Documents/April%20Fools%20Day%20Talk/threading%202.ezdraw


Threading Model

● Single NIC driver thread
 Multiplexes requests among worker threads

● Intelligent multiplexing
● IPC: Shared memory regions

14

14



Threading Model

● Faster if we pass around the NIC?
● Needs locking around the NIC

15

15



Threading Model

● Single threaded
● Avoid dispatching/synchronization costs
● Lowest latency?

16

16



RPC API

● Asynchronous API:
 Can have multiple outstanding RPCs
 Can be used by master to communicate with backups
 Can be used by client to perform multiple operations in parallel

● Broadcast/multicast
 Needed for some parts of the system: recovery, etc
 Support in RPC layer or on top of it?

rpc1.startRPC(backup1, payload);
rpc2.startRPC(backup2, payload);
rpc3.startRPC(backup3, payload);

// do_other_work()

Buffer *reply1 = rpc1.getReply();
Buffer *reply2 = rpc2.getReply();
Buffer *reply3 = rpc3.getReply();

17

17



● Experimental fast RPCs: 11 µs
 Rip out unnecessary software layers
 NIC Hardware: 1.95 µs x 4

● Software overheads < 1 µs
 But in an impractical ways

● Need help with NIC and switches
● Early RPC system design

Conclusion

18

18



Discussion

● Is 5-10 µs achievable? Is it worthwhile?
● Threading model: event based vs worker threads
● Should we limit the size of an RPC?
● Is the asynchronous API the right way?
● Other requirements of the RPC system?

19

19


