Low Latency RPCs

RAMCIloud Design Review, April 1, 2010

Aravind Narayanan
Stanford University

Overview

1985 2010 Improvement
CPU Speed 12 Mhz 4 Ghz 333 x
Bandwidth 10 Mbps 10 Gbps 1000 x
Latency 2 ms 500 ps 4 x

e Goal: 5-10 ys RPCs
e Experimental result: 11 uys RTT

e Three parts: current sources of latency, experimental
results, RPC system

Baseline Performance

memcached (30 us)

Kernel (15 ps)

Kernel (15 us) Kernel (15 us)

Kernel (15 ps)

Switches + Switches +

wire time wire time

(100 ps) (100 ps)
NIC (32 us) NIC (32 us) NIC (32 ps)

e Experiment Setup:
= |ntel Xeon - 3.4 Ghz
= Intel 82541Gl Gigabit NICs
= Standard Linux Kernel with UDP
= Switches + wire time

e Estimated using a typical data center
e 10 switches

NIC (32 ps)

Baseline Performance

memcached (30 us)

Kernel (15 ps)

Kernel (15 us) Kernel (15 ps)

Kernel (15 ps)

Switches + Switches +

wire time wire time

(100 ps) (100 ps)
NIC (32 ps) NIC (32 us) NIC (32 us)

e Total time: ~ 400 us

e Main sources of latency:
= Switch + wire time: 200 us
= NIC: 128 pys
= Kernel: 60 us
= memcached: 30 ys

NIC (32 ps)

Causes: Data center network time

e Network latency: 150 - 300 ps

= 10 - 30 ys per switch, 5 switches each way

e Latest Arista product:
= (.6 us per switch

= Need cut-through routing, (”SWitCh w
congestion management
Switch Switch
e Hoping for help! (w
= Not RAMCloud’s goal Switch Switch

L

Client Server

Causes: NIC Hardware

e Most hardware is designed for throughput, not
latency

e Interrupt coalescing/throttling: ~ 64 us one way
= Design the NIC to avoid live lock, and to lower CPU utilization
= Optimize for bandwidth
= Default setting!

Causes: Software

Kernel network stack
= Packet takes 15 us to bubble through the kernel (each way)
= 60 ps of overhead per RTT!

Protocol overhead

= TCP is inherently slow
e requires a lot of processing and state

= |P: options may add processing time

Unnecessary intermediate copies
= From user-space to kernel

CPU scheduling/preemption

Context switches

Radical Experiment

e Part 1: Tune the NIC

= Turn off interrupt coalescing, saving ~ 128 us
= Poll the NIC with a dedicated core, no interrupts!

e Part 2: Rip out unnecessary layers of software

= Map the NIC directly into user space
e User software can access NIC’s registers and ring buffers

= Eliminate networking layer
= Avoids unnecessary copying
= No kernel/context switching overhead

e Part 3: Eliminate protocol overhead

NIC Ring Buffers

NIC1

Move
packet

Experimental Result

Wire time (0.5 ps) Wire time (0.5 ps)

NIC Hardware NIC Hardware

NIC Hardware NIC Hardware

(1.95 ps) (1.95 ps) (1.95 ps) (1.95 ps)
DMA Transfer to on chip buffer
DMA transfer to on (200 ns)
chip buffer(205 ns)
Poke the NIC Poke the NIC(150 ns)
(147 ns)
Copy into ring buffer (29 ns) Construct reply (176 ns)
11 us RTT Transfer from on chip buffer
<1 ps of software overhead RieoniLeson)
NIC hardware latency: 1.95 pys x 4

Future experiment: Test over 10 Gig NICs

Transfer from on chip

buffer to memory (260 ns)

10

RPC System

e Build a real system
= As fast as weird experimental version?

e Requirements:
= Reliability
= Handles messages larger than 1 frame
= Retain single copy
e From ring buffer to server’s log (on receive)

11

11

RPC System

e The reply is the ACK for most RPCs

= RPCs are so fast that it makes no sense to ACK fragments

e Blast protocol
= Send all fragments of an RPC at once, without waiting for ACK

= Selective NACKs
= Too slow to retransmit the whole packet

Sender Receiver Sender Receiver

B W=

it

NACK
Reply

Y

Reply

12

12

Threading model

Increased parallelism:
= More cores per chip
= More threads per core

Use multiple threads to increase throughput
= Associated dispatching/synchronization overheads

On server, how to distribute requests among
available worker threads?

Several possible designs

13

file://localhost/Users/Ram/Documents/April%20Fools%20Day%20Talk/threading%202.ezdraw
file://localhost/Users/Ram/Documents/April%20Fools%20Day%20Talk/threading%202.ezdraw

Threading Model

e Single NIC driver thread

= Multiplexes requests among worker threads
¢ Intelligent multiplexing

e IPC: Shared memory regions

14

14

Threading Model

e Faster if we pass around the NIC?

e Needs locking around the NIC

15

15

Threading Model

e Avoid dispatching/synchronization costs

e Single threaded

e Lowest latency?

16

16

RPC API

e Asynchronous API:
= Can have multiple outstanding RPCs
= Can be used by master to communicate with backups
= Can be used by client to perform multiple operations in parallel
rpcl.startRPC(backupl, payload);

rpc2.startRPC(backup2, payload);
rpc3.startRPC(backup3, payload);

// do other work()

Buffer *replyl = rpcl.getReply();

Buffer *reply2 = rpc2.getReply();

Buffer *reply3 = rpc3.getReply();
e Broadcast/multicast

= Needed for some parts of the system: recovery, etc
= Support in RPC layer or on top of it?

17

Conclusion

e Experimental fast RPCs: 11 ps
= Rip out unnecessary software layers
= NIC Hardware: 1.95 pys x 4

o Software overheads <1 us
= But in an impractical ways

e Need help with NIC and switches
e Early RPC system design

18

Discussion

Is 5-10 ys achievable? Is it worthwhile?
Threading model: event based vs worker threads
Should we limit the size of an RPC?

Is the asynchronous API the right way?

Other requirements of the RPC system?

19

