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The Problem 

Solution: MinCopysets 
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Facebook’s Replication is not General Purpose 

• Cloud storage uses randomization for load balancing and 
replication 

• Load balancing: data partitioned into blocks, randomly 
distributed across cluster 

• Replication: blocks randomly replicated on different 
machines 

• Randomized replication loses data in power outages 

• Scenario: 0.5-1% of the nodes fail to reboot 

• Result: 5-10 blocks are lost (e.g., Yahoo ‘09, LinkedIn 
‘12) 

• Trade off between the frequency and magnitude of 
failures 

• When failures occur, it’s very unlikely that the failed 
nodes will store all copies of a block 

• Data loss occurs very rarely (once every 500 years) 

• If MinCopysets loses data it will lose all data on a node 
• The magnitude of data loss is greater 

MinCopysets’ Trade Off 
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