
MinCopysets: Derandomizing Replication in Cloud Storage 
Asaf Cidon, Ryan Stutsman, Stephen Rumble, Sachin Katti, John Ousterhout and Mendel Rosenblum 

The Problem 

Solution: MinCopysets 

Replication Group 3 Replication Group 2 Replication Group 1 

Chunk 1 Chunk 2 Chunk 3 Chunk 4 

Node 55 

Chunk 1 
Secondary 

Chunk 3 
Primary 

Node 7 

Chunk 1 
Primary 

Chunk 3 
Secondary 

Node 24 

Chunk 1 
Secondary 

Chunk 3 
Secondary 

Node 2 

Node 83 Node 8 

Chunk 2 
Secondary 

Chunk 2 
Secondary 

Chunk 2 
Primary 

Node 1 

Node 22 Node 47 

Chunk 4 
Primary 

Chunk 4 
Secondary 

Chunk 4 
Secondary 

Node 1 Node 2 Node 3 Node 4 Node 5 

Node 6 Node 7 Node 8 Node 9 Node 10 

Random Replication (HDFS, 
RAMCloud, GFS) 

Block 1 Block 2 Block 3 

Block 1 
Secondary 

Block 1 
Primary 

Block 1 
Secondary 

Block 2 
Secondary 

Block 2 
Secondary 

Block 2 
Primary 

Block 3 
Primary 

Block 3 
Secondary 

Block 3 
Secondary 

RAMCloud Implementation 

RAMCloud 
Coordinator 

RAMCloud 
Master 

RAMCloud 
Backup 

Request: 
Assign Replication Group 
RPC 

Server ID Replication
Group ID 

Server 0 5 

Server 1 0 

Server 2 5 

Server 3 7 

… … 

Request: 
Open New 
Chunk RPC 

Reply: 
Replication Group 

Coordinator Server List 

Facebook’s Replication is not General Purpose 

• Cloud storage uses randomization for load balancing and 
replication 

• Load balancing: data partitioned into blocks, randomly 
distributed across cluster 

• Replication: blocks randomly replicated on different 
machines 

• Randomized replication loses data in power outages 

• Scenario: 0.5-1% of the nodes fail to reboot 

• Result: 5-10 blocks are lost (e.g., Yahoo ‘09, LinkedIn 
‘12) 

• Trade off between the frequency and magnitude of 
failures 

• When failures occur, it’s very unlikely that the failed 
nodes will store all copies of a block 

• Data loss occurs very rarely (once every 500 years) 

• If MinCopysets loses data it will lose all data on a node 
• The magnitude of data loss is greater 

MinCopysets’ Trade Off 

1 

2 

3 

4 

5 

6 

7 

8 


