MinCopysets: Derandomizing Replication in Cloud Storage

Asaf Cidon, Ryan Stutsman, Stephen Rumble, Sachin Katti, John Ousterhout and Mendel Rosenblum

Probability of data loss when 1% of the nodes fail concurrently

Random Replication (HDFS, RAMCloud, GFS)

The Problem

- Cloud storage uses randomization for load balancing and replication
- Load balancing: data partitioned into blocks, randomly distributed across cluster
- Replication: blocks randomly replicated on different machines
- Randomized replication loses data in power outages
- Scenario: 0.5-1\% of the nodes fail to reboot
- Result: 5-10 blocks are lost (e.g., Yahoo ‘09, LinkedIn '12)

Solution: MinCopysets

Probability of data loss when 1% of the nodes fail concurrently

MinCopysets' Trade Off

- Trade off between the frequency and magnitude of failures
- When failures occur, it's very unlikely that the failed nodes will store all copies of a block
- Data loss occurs very rarely (once every 500 years)
- If MinCopysets loses data it will lose all data on a node - The magnitude of data loss is greater

RAMCloud Implementation

Facebook's Replication is not General Purpose
Probability of data loss when 1% of the nodes fail concurrently

