
























Table Enumeration in RAMCloud

What is enumeration? Client and Server Data Structures

Server algorithm

Enumeration of a table allows a client to iterate through all key/value 
pairs from the given table stored in RAMCloud. Enumeration might be 
useful for debugging, for example, or for making offline backups of a live 
system while it is running. However, since enumeration is not presumed 
to be a common operation, we must be careful not to burden the 
system with additional data structures which might impact the latencies 
of reads and writes in the system.

How clients locate objects on servers

How servers locate objects for clients

Elliott Slaughter

Potential Pitfalls

• Table can be modified during enumeration

• Table might be distributed on multiple servers

• Need multiple requests to fetch a table

• Servers can go up and down

• Table can be redistributed across the cluster

• Etc.

Consistency Model
We propose a “once-only” consistency model for enumeration:

• Any object whose lifetime spans the entire enumeration will be 
returned exactly once

• No object will be returned more than once

Client algorithm

tablet map

servers

string key
"SEDCL 2012"

hash
function

0x00... - 0x3f...

0x40... - 0x7f...

0x80... - 0xbf...

0xc0... - 0xff...

64-bit
hash value

0x59...

A

B

C

D

Since we might need to make multiple round trips between the client 
and any given server, we need an “iterator” to resume iteration through 
the portions of a table stored on a server. Supposing this iterator is 
opaque to the client, we can illustrate the client-side enumeration 
algorithm as follows. (See “Server algorithm” for a description of what 
needs to go inside the iterator.)

• iter := empty buffer

• tabletStartHash := 0

• done := false

•While not done:

• Locate the server that owns the tablet starting at 
tabletStartHash

• Get objects, nextIter, nextTabletStartHash from server via 
EnumerateRPC

• iter := nextIter

• tabletStartHash := nextTabletStartHash

• done := no objects returned and
nextTabletStartHash <= tabletStartHash

RAMCloud is a distributed store, so we must handle changes in the 
system during enumeration.

C

C'

D

C''

A B

The naive algorithm for the server is to iterate through the hash table 
in bucket order and collect objects. But enumeration might take 
multiple round trips, so we need to know where to resume iteration. 
And we need to deal with table reconfiguration at any time.

We make the iterator a stack, where each frame contains sufficient 
information to specify the state of iteration at a specific machine. When 
the table configuration changes, we push a frame onto the stack to 
track the new configuration. We can then use old frames to filter out 
entries that have already been returned.

bucketIndex
nextBucketHash
tabletStartHash
tabletEndHash
numBuckets

*

SEDCL, June 7-8, 2012


