How to apply and flesh out Paxos
Diego Ongaro

June 2012

Intro

» Can | explain how to use Paxos in a practical and
complete implementation?

» These ideas form the basis of LogCabin

» A new configuration service for distributed
systems (like Chubby, ZooKeeper)

Intro

» Can | explain how to use Paxos in a practical and
complete implementation?
» These ideas form the basis of LogCabin
» A new configuration service for distributed
systems (like Chubby, ZooKeeper)
» Quick survey

1. Have heard of Paxos?

2. Know when to apply Paxos?
3. Understand Paxos?

4. Fear Paxos?

Brief History

» Viewstamped Replication — 1988 — Oki and Liskov
» Paxos — 1989 through 1998 — Lamport
» This presentation explains a variant of Multi-Paxos

Goals and assumptions

Goal: framework to build a small, fault-tolerant
state machine

v

v

Servers can crash at any time, can later restart
» Assume non-byzantine failures

v

No single point of failure

» Service should be up if any majority of the
cluster is up

Small cluster sizes, such as 5 servers

v

When is it appropriate to use Paxos?

» Want fault-tolerant service and can't tolerate
split-brain problem

» In RAMCloud, the cluster coordinator must be
fault-tolerant, but there must be at most one at a

time.
[Client] [Client] [Client] e

(Master] (Master] (Master]

Backup Backup Backup

Client

Coordinator

Desired operation

Server 1

L Leader

Follower

stOTE(- .)

Server 2
)

Follower
——

Server 3

)

Follower
——

» Leader: a server willing to act on client requests
» Can't guarantee a single leader at a time

» Will guarantee safety with multiple leaders
» Will favor a single leader using timeouts

Replicating a log of operations

Client RPC
—

Cluster
Network

.
Server

Sometimes
Leader

Follower

]E

State Machine

@)
OIS
Sy

Logcd

» This framework provides an ordered log of

operations to a state machine
» The state machine can implement a key-value

store, a lock server, etc

» If all servers play the same log, their states will be

the same

Log contents

» Each server stores a full copy of the log, made up of slots:

» operation — a client’s request to the state machine

» finalized flag — set after majority of the replicas have
stored same operation, guaranteed not to change

» epoch — explained later

» Each state machine advances once the next slot's operation
is finalized

» Main idea: take a client’s request, commit it to the next
available slot, wait for the local state machine to advance
there, respond to the client

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5
Current T \ e .
ops: X3 [x4 x+1 x+6x<+x—2] =

E

state machine waiting here

Three-phase algorithm

1. overthrow(new epoch) —
last used slot | current epoch

» Used by new leader to kill off old leader

2. store(epoch, slot, operation) — ok | current epoch
» Used to replicate operations

3. finalize(epoch, slot) — ok | missing
» Used to flag slots as immutable

Always need a majority of responses

Beginning of time

Server 1

Server 2 Server 3 Server 4

overthrow(new epoch) — last used slot | current epoch
» Won't make sense yet — just need to bootstrap
» Epoch is made up of monotonically increasing
number and server ID

10

Beginning of time

Server 1

nil
chrow(1.1) o
over epoch: 1.1

Leader

Server 5

{ epoch: 1.1 } { epoch: 1.1 } { epoch: 1.1 J

Server 2 Server 3 Server 4

overthrow(new epoch) — last used slot | current epoch
» Won't make sense yet — just need to bootstrap
» Epoch is made up of monotonically increasing

number and server |ID
10

Store

Server 1

Server 5

{ epoch: 1.1 } { epoch: 1.1 } { epoch: 1.1 J

Server 2 Server 3 Server 4

store(epoch, slot, operation) — ok | current epoch
» If epoch = current, return ok, else return current
» Used to replicate operations
» Later stores may overwrite earlier stores

11

Store

Server 1

Server 5

R R i R N
epoch: 1.1 epoch: 1.1 epoch: 1.1

Server 2 Server 3 Server 4

store(epoch, slot, operation) — ok | current epoch
» If epoch = current, return ok, else return current
» Used to replicate operations
» Later stores may overwrite earlier stores

11

Finalize

Server 1

ran I |

epoch: 1. 1

Server 5

maen | momam)| saamam
epoch: 1.1 epoch: 1.1 epoch: 1.1

Server 2 Server 3 Server 4

finalize(epoch, slot) — ok | missing
» If slot has (epoch, op), mark as finalized
» Allows state machines to advance

12

Finalize

Server 1

{ Bl M BN H BN }
epoch: 1.1 epoch: 1.1 epoch: 1.1

Server 2 Server 3 Server 4

finalize(epoch, slot) — ok | missing
» If slot has (epoch, op), mark as finalized
» Allows state machines to advance

12

Store again

Server 1

{ B M B H L }
epoch: 1.1 epoch: 1.1 epoch: 1.1

Server 2 Server 3 Server 4

store(epoch, slot, operation) — ok | current epoch
» If epoch = current, return ok, else return current

13

Store again

Server 1

{ BTN M [al54) H BTN }
epoch: 1.1 epoch: 1.1 epoch: 1.1

Server 2 Server 3 Server 4

store(epoch, slot, operation) — ok | current epoch
» If epoch = current, return ok, else return current

13

New leader overthrows old leader

Server 1 Server 5

Ll || EIbE: || Bk
epoch: 1.1 epoch: 1.1 epoch: 1.1
Server 2 Server 3 Server 4

overthrow(new epoch) — last used slot | current epoch
» If epoch > current, return last used slot, else
return current
» Used by new leader to kill off old leader

14

New leader overthrows old leader

Server 1 Server 5

_, slot 2 Leader

{EDQ}[EGQ]{E@E}
epoch: 2.5 epoch: 2.5 epoch: 2.5

Server 2 Server 3 Server 4

overthrow(new epoch) — last used slot | current epoch
» If epoch > current, return last used slot, else
return current
» Used by new leader to kill off old leader

14

Old leader can no longer store

Server 1 Server 5

epoch: 25 } [epoch: 2.5 J

Server 2 Server 3 Server 4

store(epoch, slot, operation) — ok | current epoch
» If epoch = current, return ok, else return current

15

Old leader can no longer store

Server 1 Server 5

{ B M BTN H Gl }
epoch: 2.5 epoch: 2.5 epoch: 2.5

Server 2 Server 3 Server 4

store(epoch, slot, operation) — ok | current epoch
» If epoch = current, return ok, else return current

15

Concurrency still safe

» Previous example: leaders operated in lockstep

» Still safe with concurrent operation

» If both leaders each call a majority of followers, at
least one server will hear from both

Leader 1 Leader 5

» After overthrow, old leader’s store calls will never

succeed on a majority of followers
16

Responsibilities of leadership

1.

To advance the local state machine, finalize all
slots locally up to last used slot

. To speed up future recoveries, replicate operations

and finalized flags widely

last used slot

Server 1 '_%_: LD
Server 2 [A] B2 {C} iD}
Server 3 [A] 1B
Server 4 [A] {8}
new leader — Server 5 [A] 1B [€][773 13

%
[s
S

e
[A]
pmt | e

1 |

17

Responsibilities of leadership

1.

To advance the local state machine, finalize all
slots locally up to last used slot

. To speed up future recoveries, replicate operations

and finalized flags widely

last used slot

4
5
s
[>]
%
2

Server 2 [A] {83 {C} {D;
Server 3 'Bz.
Server 4 :_B_z-:

new leader — Server 5 iBll

NN

AEE

17

Read from remote logs
read(slot) — epoch, operation

» Safe to finalize an operation if a majority of servers
have stored it.

18

Read from remote logs

read(slot) — epoch, operation
» Safe to finalize an operation if a majority of servers
have stored it.
» Safe to store the operation with the latest epoch
among a majority.

18

Read from remote logs

read(slot) — epoch, operation

» Safe to finalize an operation if a majority of servers

have stored it.

» Safe to store the operation with the latest epoch

among a majority.

last used slot

Server 1 [A] 83 {7} 1D

Server 2 [A] {83 {C} {D;
Server 3 :_é_z-:)
Server 4 '-B-z-: . E

new leader — Server 5 E E . @

18

Replicate more widely

» To replicate operations and finalize slots from
previous leaders on followers, need to know what
they're missing.

» query() — first unfinalized slot number

» Leader uses store and finalize to fill in the gap.

last used slot

Server 1
Server 2
Server 3
Server 4 B

new leader — Server 5

[A]
(=]

2] 2] [P

Performance

It's a three-phase protocol, but:
» overthrow is used rarely

» finalize only speeds up recovery, so it can be
deferred

Common case: one round of RPCs

20

Encouraging one leader at a time

boot timeout

rejecte
down _ crash _follower r€J€cted leader
crash

» Timeouts make passive servers become leaders
» Leader issues heartbeats in case of inactivity
» Timeout period chosen randomly so not all
servers wake up at once
» Epoch numbers select arbitrarily between the
available leaders
» If a leader’s store is rejected, it becomes
passive. 01

Issues not covered

Who do clients talk to?
» Guess a leader, redirected if wrong

22

|ssues not covered
Who do clients talk to?

» Guess a leader, redirected if wrong
Read-only operations

» Leases or RPC, don't need to go to disk

22

Issues not covered

Who do clients talk to?

» Guess a leader, redirected if wrong
Read-only operations

» Leases or RPC, don't need to go to disk
What's persisted?

» Followers persist everything, leaders don't

22

Issues not covered
Who do clients talk to?
» Guess a leader, redirected if wrong
Read-only operations
» Leases or RPC, don't need to go to disk
What's persisted?
» Followers persist everything, leaders don't
How is space reclaimed?
» Snapshots (typically) or cleaning (John's students)

22

Issues not covered

Who do clients talk to?
» Guess a leader, redirected if wrong
Read-only operations
» Leases or RPC, don’t need to go to disk
What's persisted?
» Followers persist everything, leaders don't
How is space reclaimed?
» Snapshots (typically) or cleaning (John's students)
How is cluster membership managed?
» Submit request to state machine

22

Issues not covered

Who do clients talk to?

» Guess a leader, redirected if wrong
Read-only operations

» Leases or RPC, don’t need to go to disk
What's persisted?

» Followers persist everything, leaders don't
How is space reclaimed?

» Snapshots (typically) or cleaning (John's students)
How is cluster membership managed?

» Submit request to state machine
How can we get linearizable semantics?

» This gets you at-least-once semantics;

use sequence numbers for exactly-once ’

Questions and feedback

1. Have heard of Paxos?

2. Know when to apply Paxos?
3. Understand Paxos?

4. Fear Paxos?

23

RPCs

overthrow(new epoch) —
last used slot | current epoch

v

v

store(epoch, slot, operation) — ok | current epoch

v

finalize(epoch, slot) — ok | missing

v

read(slot) — epoch, operation
query() — first unfinalized slot number

v

24

