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Intro

» Can | explain how to use Paxos in a practical and
complete implementation?
» These ideas form the basis of LogCabin
» A new configuration service for distributed
systems (like Chubby, ZooKeeper)
» Quick survey

1. Have heard of Paxos?

2. Know when to apply Paxos?
3. Understand Paxos?

4. Fear Paxos?



Brief History

» Viewstamped Replication — 1988 — Oki and Liskov
» Paxos — 1989 through 1998 — Lamport
» This presentation explains a variant of Multi-Paxos



Goals and assumptions

Goal: framework to build a small, fault-tolerant
state machine

v

v

Servers can crash at any time, can later restart
» Assume non-byzantine failures

v

No single point of failure

» Service should be up if any majority of the
cluster is up

Small cluster sizes, such as 5 servers

v



When is it appropriate to use Paxos?

» Want fault-tolerant service and can't tolerate
split-brain problem

» In RAMCloud, the cluster coordinator must be
fault-tolerant, but there must be at most one at a

time.
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Desired operation
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» Leader: a server willing to act on client requests
» Can't guarantee a single leader at a time

» Will guarantee safety with multiple leaders
» Will favor a single leader using timeouts



Replicating a log of operations
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» This framework provides an ordered log of

operations to a state machine
» The state machine can implement a key-value

store, a lock server, etc

» If all servers play the same log, their states will be

the same




Log contents

» Each server stores a full copy of the log, made up of slots:

» operation — a client’s request to the state machine

» finalized flag — set after majority of the replicas have
stored same operation, guaranteed not to change

» epoch — explained later

» Each state machine advances once the next slot's operation
is finalized

» Main idea: take a client’s request, commit it to the next
available slot, wait for the local state machine to advance
there, respond to the client
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Three-phase algorithm

1. overthrow(new epoch) —
last used slot | current epoch

» Used by new leader to kill off old leader

2. store(epoch, slot, operation) — ok | current epoch
» Used to replicate operations

3. finalize(epoch, slot) — ok | missing
» Used to flag slots as immutable

Always need a majority of responses



Beginning of time

Server 1

Server 2 Server 3 Server 4

overthrow(new epoch) — last used slot | current epoch
» Won't make sense yet — just need to bootstrap
» Epoch is made up of monotonically increasing
number and server ID
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Beginning of time

Server 1

nil
chrow(1.1) o
over epoch: 1.1
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Server 2 Server 3 Server 4

overthrow(new epoch) — last used slot | current epoch
» Won't make sense yet — just need to bootstrap
» Epoch is made up of monotonically increasing

number and server |ID
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Store

Server 1

Server 5

{ epoch: 1.1 } { epoch: 1.1 } { epoch: 1.1 J

Server 2 Server 3 Server 4

store(epoch, slot, operation) — ok | current epoch
» If epoch = current, return ok, else return current
» Used to replicate operations
» Later stores may overwrite earlier stores
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Store

Server 1

Server 5
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epoch: 1.1 epoch: 1.1 epoch: 1.1

Server 2 Server 3 Server 4

store(epoch, slot, operation) — ok | current epoch
» If epoch = current, return ok, else return current
» Used to replicate operations
» Later stores may overwrite earlier stores

11



Finalize

Server 1
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epoch: 1. 1

Server 5
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epoch: 1.1 epoch: 1.1 epoch: 1.1

Server 2 Server 3 Server 4

finalize(epoch, slot) — ok | missing
» If slot has (epoch, op), mark as finalized
» Allows state machines to advance
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Finalize

Server 1
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finalize(epoch, slot) — ok | missing
» If slot has (epoch, op), mark as finalized
» Allows state machines to advance
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Store again

Server 1

{ B M B H L }
epoch: 1.1 epoch: 1.1 epoch: 1.1

Server 2 Server 3 Server 4

store(epoch, slot, operation) — ok | current epoch
» If epoch = current, return ok, else return current
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Store again

Server 1

{ BTN M [al54 ) H BTN }
epoch: 1.1 epoch: 1.1 epoch: 1.1
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store(epoch, slot, operation) — ok | current epoch
» If epoch = current, return ok, else return current
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New leader overthrows old leader

Server 1 Server 5

Ll || EIbE: || Bk
epoch: 1.1 epoch: 1.1 epoch: 1.1
Server 2 Server 3 Server 4

overthrow(new epoch) — last used slot | current epoch
» If epoch > current, return last used slot, else
return current
» Used by new leader to kill off old leader
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New leader overthrows old leader

Server 1 Server 5
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overthrow(new epoch) — last used slot | current epoch
» If epoch > current, return last used slot, else
return current
» Used by new leader to kill off old leader
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Old leader can no longer store

Server 1 Server 5
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store(epoch, slot, operation) — ok | current epoch
» If epoch = current, return ok, else return current
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Old leader can no longer store

Server 1 Server 5
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epoch: 2.5 epoch: 2.5 epoch: 2.5
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store(epoch, slot, operation) — ok | current epoch
» If epoch = current, return ok, else return current
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Concurrency still safe

» Previous example: leaders operated in lockstep

» Still safe with concurrent operation

» If both leaders each call a majority of followers, at
least one server will hear from both

Leader 1 Leader 5

» After overthrow, old leader’s store calls will never

succeed on a majority of followers
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Responsibilities of leadership

1.

To advance the local state machine, finalize all
slots locally up to last used slot

. To speed up future recoveries, replicate operations

and finalized flags widely

last used slot
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Responsibilities of leadership

1.

To advance the local state machine, finalize all
slots locally up to last used slot

. To speed up future recoveries, replicate operations

and finalized flags widely

last used slot
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Read from remote logs
read(slot) — epoch, operation

» Safe to finalize an operation if a majority of servers
have stored it.

18



Read from remote logs

read(slot) — epoch, operation
» Safe to finalize an operation if a majority of servers
have stored it.
» Safe to store the operation with the latest epoch
among a majority.
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Read from remote logs

read(slot) — epoch, operation

» Safe to finalize an operation if a majority of servers

have stored it.

» Safe to store the operation with the latest epoch

among a majority.

last used slot
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Replicate more widely

» To replicate operations and finalize slots from
previous leaders on followers, need to know what
they're missing.

» query() — first unfinalized slot number

» Leader uses store and finalize to fill in the gap.

last used slot
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Performance

It's a three-phase protocol, but:
» overthrow is used rarely

» finalize only speeds up recovery, so it can be
deferred

Common case: one round of RPCs
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Encouraging one leader at a time

boot timeout

rejecte
down _ crash _follower r€J€cted leader
crash

» Timeouts make passive servers become leaders
» Leader issues heartbeats in case of inactivity
» Timeout period chosen randomly so not all
servers wake up at once
» Epoch numbers select arbitrarily between the
available leaders
» If a leader’s store is rejected, it becomes
passive. 01



Issues not covered

Who do clients talk to?
» Guess a leader, redirected if wrong
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Issues not covered

Who do clients talk to?

» Guess a leader, redirected if wrong
Read-only operations

» Leases or RPC, don’t need to go to disk
What's persisted?

» Followers persist everything, leaders don't
How is space reclaimed?

» Snapshots (typically) or cleaning (John's students)
How is cluster membership managed?

» Submit request to state machine
How can we get linearizable semantics?

» This gets you at-least-once semantics;

use sequence numbers for exactly-once ’



Questions and feedback

1. Have heard of Paxos?

2. Know when to apply Paxos?
3. Understand Paxos?

4. Fear Paxos?
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RPCs

overthrow(new epoch) —
last used slot | current epoch

v

v

store(epoch, slot, operation) — ok | current epoch

v

finalize(epoch, slot) — ok | missing

v

read(slot) — epoch, operation
query() — first unfinalized slot number

v
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