
How to apply and flesh out Paxos

Diego Ongaro

June 2012

1



Intro

I Can I explain how to use Paxos in a practical and
complete implementation?

I These ideas form the basis of LogCabin
I A new configuration service for distributed

systems (like Chubby, ZooKeeper)

I Quick survey

1. Have heard of Paxos?
2. Know when to apply Paxos?
3. Understand Paxos?
4. Fear Paxos?

2



Intro

I Can I explain how to use Paxos in a practical and
complete implementation?

I These ideas form the basis of LogCabin
I A new configuration service for distributed

systems (like Chubby, ZooKeeper)

I Quick survey

1. Have heard of Paxos?
2. Know when to apply Paxos?
3. Understand Paxos?
4. Fear Paxos?

2



Brief History

I Viewstamped Replication – 1988 – Oki and Liskov

I Paxos – 1989 through 1998 – Lamport

I This presentation explains a variant of Multi-Paxos

3



Goals and assumptions

I Goal: framework to build a small, fault-tolerant
state machine

I Servers can crash at any time, can later restart
I Assume non-byzantine failures

I No single point of failure
I Service should be up if any majority of the

cluster is up

I Small cluster sizes, such as 5 servers

4



When is it appropriate to use Paxos?

I Want fault-tolerant service and can’t tolerate
split-brain problem

I In RAMCloud, the cluster coordinator must be
fault-tolerant, but there must be at most one at a
time.

Coordinator

Master

Backup

Master

Backup

Master

Backup

Master

Backup
. . .

Client Client Client Client. . .

Datacenter Network

5



Desired operation

Leader

Follower

Server 1

Follower

Server 2

Follower

Server 3Client

request(...)

store(...)

store(...)

store(...)

I Leader: a server willing to act on client requests
I Can’t guarantee a single leader at a time

I Will guarantee safety with multiple leaders
I Will favor a single leader using timeouts

6



Replicating a log of operations

Cluster
Network

Server

Sometimes
Leader

Follower

Log a b c d

State Machine

qa

qb

qd

qc

Client RPC

I This framework provides an ordered log of
operations to a state machine

I The state machine can implement a key-value
store, a lock server, etc

I If all servers play the same log, their states will be
the same

7



Log contents

I Each server stores a full copy of the log, made up of slots:

I operation – a client’s request to the state machine
I finalized flag – set after majority of the replicas have

stored same operation, guaranteed not to change
I epoch – explained later

I Each state machine advances once the next slot’s operation
is finalized

I Main idea: take a client’s request, commit it to the next
available slot, wait for the local state machine to advance
there, respond to the client

Current
ops:

x ← 3 x ← x + 1 x ← 6 x ← x − 2 ...

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

state machine waiting here
8



Three-phase algorithm

1. overthrow(new epoch) →
last used slot | current epoch

I Used by new leader to kill off old leader

2. store(epoch, slot, operation)→ ok | current epoch
I Used to replicate operations

3. finalize(epoch, slot) → ok | missing
I Used to flag slots as immutable

Always need a majority of responses

9



Beginning of time

Leader

Server 1

Server 2 Server 3 Server 4

Server 5
epoch:

epoch: epoch: epoch:

epoch:
overthrow(1.1)

overthrow(new epoch) → last used slot | current epoch
I Won’t make sense yet – just need to bootstrap
I Epoch is made up of monotonically increasing

number and server ID
10



Beginning of time

Leader

Server 1

Server 2 Server 3 Server 4

Server 5
epoch: 1.1

epoch: 1.1 epoch: 1.1 epoch: 1.1

epoch: 1.1overthrow(1.1) → nil

overthrow(new epoch) → last used slot | current epoch
I Won’t make sense yet – just need to bootstrap
I Epoch is made up of monotonically increasing

number and server ID
10



Store

Leader

Server 1

Server 2 Server 3 Server 4

Server 5
epoch: 1.1

epoch: 1.1 epoch: 1.1 epoch: 1.1

epoch: 1.1
store(1.1, 1, a)

store(epoch, slot, operation) → ok | current epoch
I If epoch = current, return ok, else return current
I Used to replicate operations
I Later stores may overwrite earlier stores

11



Store

Leader

Server 1

Server 2 Server 3 Server 4

Server 5a
epoch: 1.1

a
epoch: 1.1

a
epoch: 1.1

a
epoch: 1.1

a
epoch: 1.1store(1.1, 1, a) → ok

store(epoch, slot, operation) → ok | current epoch
I If epoch = current, return ok, else return current
I Used to replicate operations
I Later stores may overwrite earlier stores

11



Finalize

Leader

Server 1

Server 2 Server 3 Server 4

Server 5a
epoch: 1.1

a
epoch: 1.1

a
epoch: 1.1

a
epoch: 1.1

a
epoch: 1.1

finalize(1.1, 1)

finalize(epoch, slot) → ok | missing
I If slot has (epoch, op), mark as finalized
I Allows state machines to advance

12



Finalize

Leader

Server 1

Server 2 Server 3 Server 4

Server 5a
epoch: 1.1

a
epoch: 1.1

a
epoch: 1.1

a
epoch: 1.1

a
epoch: 1.1finalize(1.1, 1) → ok

finalize(epoch, slot) → ok | missing
I If slot has (epoch, op), mark as finalized
I Allows state machines to advance

12



Store again

Leader

Server 1

Server 2 Server 3 Server 4

Server 5a
epoch: 1.1

a
epoch: 1.1

a
epoch: 1.1

a
epoch: 1.1

a
epoch: 1.1

store(1.1, 2, b)

store(epoch, slot, operation) → ok | current epoch

I If epoch = current, return ok, else return current

13



Store again

Leader

Server 1

Server 2 Server 3 Server 4

Server 5a b
epoch: 1.1

a b
epoch: 1.1

a b
epoch: 1.1

a b
epoch: 1.1

a b
epoch: 1.1store(1.1, 2, b) → ok

store(epoch, slot, operation) → ok | current epoch

I If epoch = current, return ok, else return current

13



New leader overthrows old leader

Leader

Server 1

Server 2 Server 3 Server 4

Leader

Server 5

a b
epoch: 1.1

a b
epoch: 1.1

a b
epoch: 1.1

a b
epoch: 1.1

a b
epoch: 1.1

overthrow(2.5)

overthrow(new epoch) → last used slot | current epoch
I If epoch ≥ current, return last used slot, else

return current
I Used by new leader to kill off old leader

14



New leader overthrows old leader

Leader

Server 1

Server 2 Server 3 Server 4

Leader

Server 5

a b
epoch: 2.5

a b
epoch: 2.5

a b
epoch: 2.5

a b
epoch: 2.5

a b
epoch: 2.5

overthrow(2.5) → slot 2

overthrow(new epoch) → last used slot | current epoch
I If epoch ≥ current, return last used slot, else

return current
I Used by new leader to kill off old leader

14



Old leader can no longer store

Leader

Server 1

Server 2 Server 3 Server 4

Leader

Server 5

a b
epoch: 2.5

a b
epoch: 2.5

a b
epoch: 2.5

a b
epoch: 2.5

a b
epoch: 2.5

store(1.1, 3, c)

store(epoch, slot, operation) → ok | current epoch

I If epoch = current, return ok, else return current

15



Old leader can no longer store

Leader

Server 1

Server 2 Server 3 Server 4

Leader

Server 5

a b
epoch: 2.5

a b
epoch: 2.5

a b
epoch: 2.5

a b
epoch: 2.5

a b
epoch: 2.5

store(1.1, 3, c) → epoch 2.5

store(epoch, slot, operation) → ok | current epoch

I If epoch = current, return ok, else return current

15



Concurrency still safe

I Previous example: leaders operated in lockstep
I Still safe with concurrent operation
I If both leaders each call a majority of followers, at

least one server will hear from both

Fol1 Fol2 Fol3 Fol4 Fol5

Leader 1 Leader 5

I After overthrow, old leader’s store calls will never
succeed on a majority of followers

16



Responsibilities of leadership

1. To advance the local state machine, finalize all
slots locally up to last used slot

2. To speed up future recoveries, replicate operations
and finalized flags widely

Server 1 A B1 D

Server 2 A B2 C D

Server 3 ...A B2 C

Server 4 A B2 C D

Server 5 A B1 Cnew leader

last used slot

17



Responsibilities of leadership

1. To advance the local state machine, finalize all
slots locally up to last used slot

2. To speed up future recoveries, replicate operations
and finalized flags widely

Server 1 A B1 D

Server 2 A B2 C D

Server 3 ...A B2 C

Server 4 A B2 C D

Server 5 A B1 Cnew leader

last used slot

17



Read from remote logs

read(slot) → epoch, operation
I Safe to finalize an operation if a majority of servers

have stored it.

I Safe to store the operation with the latest epoch
among a majority.

Server 1 A B2 D

Server 2 A B2 C D

Server 3 ...A B2 C

Server 4 A B2 C D

Server 5 A B2 C Dnew leader

last used slot

18



Read from remote logs

read(slot) → epoch, operation
I Safe to finalize an operation if a majority of servers

have stored it.
I Safe to store the operation with the latest epoch

among a majority.

Server 1 A B2 D

Server 2 A B2 C D

Server 3 ...A B2 C

Server 4 A B2 C D

Server 5 A B2 C Dnew leader

last used slot

18



Read from remote logs

read(slot) → epoch, operation
I Safe to finalize an operation if a majority of servers

have stored it.
I Safe to store the operation with the latest epoch

among a majority.

Server 1 A B2 D

Server 2 A B2 C D

Server 3 ...A B2 C

Server 4 A B2 C D

Server 5 A B2 C Dnew leader

last used slot

18



Replicate more widely
I To replicate operations and finalize slots from

previous leaders on followers, need to know what
they’re missing.

I query() → first unfinalized slot number
I Leader uses store and finalize to fill in the gap.

Server 1 A B2 C D

Server 2 A B2 C D

Server 3 ...A B2 C D

Server 4 A B2 C D

Server 5 A B2 C Dnew leader

last used slot

19



Performance

It’s a three-phase protocol, but:

I overthrow is used rarely

I finalize only speeds up recovery, so it can be
deferred

Common case: one round of RPCs

20



Encouraging one leader at a time

down follower leader

boot

crash

crash

timeout

rejected

I Timeouts make passive servers become leaders
I Leader issues heartbeats in case of inactivity
I Timeout period chosen randomly so not all

servers wake up at once
I Epoch numbers select arbitrarily between the

available leaders
I If a leader’s store is rejected, it becomes

passive. 21



Issues not covered
Who do clients talk to?

I Guess a leader, redirected if wrong

Read-only operations
I Leases or RPC, don’t need to go to disk

What’s persisted?
I Followers persist everything, leaders don’t

How is space reclaimed?
I Snapshots (typically) or cleaning (John’s students)

How is cluster membership managed?
I Submit request to state machine

How can we get linearizable semantics?
I This gets you at-least-once semantics;

use sequence numbers for exactly-once

22



Issues not covered
Who do clients talk to?

I Guess a leader, redirected if wrong
Read-only operations

I Leases or RPC, don’t need to go to disk

What’s persisted?
I Followers persist everything, leaders don’t

How is space reclaimed?
I Snapshots (typically) or cleaning (John’s students)

How is cluster membership managed?
I Submit request to state machine

How can we get linearizable semantics?
I This gets you at-least-once semantics;

use sequence numbers for exactly-once

22



Issues not covered
Who do clients talk to?

I Guess a leader, redirected if wrong
Read-only operations

I Leases or RPC, don’t need to go to disk
What’s persisted?

I Followers persist everything, leaders don’t

How is space reclaimed?
I Snapshots (typically) or cleaning (John’s students)

How is cluster membership managed?
I Submit request to state machine

How can we get linearizable semantics?
I This gets you at-least-once semantics;

use sequence numbers for exactly-once

22



Issues not covered
Who do clients talk to?

I Guess a leader, redirected if wrong
Read-only operations

I Leases or RPC, don’t need to go to disk
What’s persisted?

I Followers persist everything, leaders don’t
How is space reclaimed?

I Snapshots (typically) or cleaning (John’s students)

How is cluster membership managed?
I Submit request to state machine

How can we get linearizable semantics?
I This gets you at-least-once semantics;

use sequence numbers for exactly-once

22



Issues not covered
Who do clients talk to?

I Guess a leader, redirected if wrong
Read-only operations

I Leases or RPC, don’t need to go to disk
What’s persisted?

I Followers persist everything, leaders don’t
How is space reclaimed?

I Snapshots (typically) or cleaning (John’s students)
How is cluster membership managed?

I Submit request to state machine

How can we get linearizable semantics?
I This gets you at-least-once semantics;

use sequence numbers for exactly-once

22



Issues not covered
Who do clients talk to?

I Guess a leader, redirected if wrong
Read-only operations

I Leases or RPC, don’t need to go to disk
What’s persisted?

I Followers persist everything, leaders don’t
How is space reclaimed?

I Snapshots (typically) or cleaning (John’s students)
How is cluster membership managed?

I Submit request to state machine
How can we get linearizable semantics?

I This gets you at-least-once semantics;
use sequence numbers for exactly-once

22



Questions and feedback

1. Have heard of Paxos?

2. Know when to apply Paxos?

3. Understand Paxos?

4. Fear Paxos?

23



RPCs

I overthrow(new epoch) →
last used slot | current epoch

I store(epoch, slot, operation) → ok | current epoch

I finalize(epoch, slot) → ok | missing

I read(slot) → epoch, operation

I query() → first unfinalized slot number

24


