
Raft User Study

Diego Ongaro & John Ousterhout
Stanford University

SEDCL Retreat

June 6, 2013

1

Intro

I Last year’s retreat: talk on Paxos

I John started a competing algorithm

I Designed Raft to be easier to understand

I Our reviewers didn’t believe us

I Conducted an experiment to demonstrate that
Raft is easier to understand than Paxos

2

Context: replicated state machines

Server

Log

State Machine
Consensus
Module

Client

add mov ret ...

2

1

3

2

4

I State machine defines data structure
I Interface is application-specific

I Replicated log feeds commands to state machine
I Same log ⇒ same sequence of states, outputs
I Raft and Multi-Paxos are two consensus algorithms

to manage the replicated log
3

1. Serial operation

...

Paxos Raft

...1 2 3

I Basic Paxos defines consensus on just one log entry
I Multi-Paxos forms a log and optimizes across

entries
I Each log entry can proceed concurrently
I What’s the advantage of concurrent operation?

I Ultimately the state machine must consume
entries serially

I Raft appends entries to the log in order
4

2. Strong leader

I Raft first elects a cluster leader
I Only the leader appends to the replicated log
I Inconsistencies arise only on leader changes

I Basic Paxos is symmetric (p2p)

I Multi-Paxos introduces a leader as an optimization

5

A few tips from Scott

I Don’t just ask people their opinion: measure it

I Record the lectures

I Pilot everything twice

I Doing Psychology Experiments by David W. Martin

6

From the participants’ view

I Participants: undergrad and grad students
I Stanford’s Advanced OS class: 32

(5% participation grade)
I Berkeley’s Distributed Computing class: 16

(obvious bluff)
I Get randomly assigned to group
I Log onto web site, watch 1 hr Paxos (Raft) video,

take 1 hr Paxos (Raft) quiz
I sleep(60× 60× 24× 5)
I Log onto web site, watch 1 hr Raft (Paxos) video,

take 1 hr Raft (Paxos) quiz
I Take short survey

7

Lecture challenges

I Same lecturer or expert on each algorithm?

I Which Paxos do we teach? How much do we
improve it?

I What material do we include?

8

Paxos lecture: Implementing Replicated Logs
 with Paxos

John Ousterhout and Diego Ongaro

Stanford University

Note: this material borrows heavily from slides by Lorenzo Alvisi, Ali Ghodsi, and David Mazières

● Replicated log => replicated state machine

 All servers execute same commands in same order

● Consensus module ensures proper log replication

● System makes progress as long as any majority of servers are up

● Failure model: fail-stop (not Byzantine), delayed/lost messages

March 1, 2013 Implementing Replicated Logs with Paxos Slide 2

Goal: Replicated Log

add jmp mov shl

Log

Consensus
Module

State
Machine

add jmp mov shl

Log

Consensus
Module

State
Machine

add jmp mov shl

Log

Consensus
Module

State
Machine

Servers

Clients

shl

Decompose the problem:

● Basic Paxos (“single decree”):

 One or more servers propose values

 System must agree on a single value as chosen

 Only one value is ever chosen

● Multi-Paxos:

 Combine several instances of Basic Paxos to agree on a series

of values forming the log

March 1, 2013 Implementing Replicated Logs with Paxos Slide 3

The Paxos Approach

● Safety:

 Only a single value may be chosen

 A server never learns that a value has been chosen unless it

really has been

● Liveness (as long as majority of servers up and

communicating with reasonable timeliness):

 Some proposed value is eventually chosen

 If a value is chosen, servers eventually learn about it

The term “consensus problem” typically refers to this

single-value formulation

March 1, 2013 Implementing Replicated Logs with Paxos Slide 4

Requirements for Basic Paxos

● Proposers:

 Active: put forth particular values to be chosen

 Handle client requests

● Acceptors:

 Passive: respond to messages from proposers

 Responses represent votes that form consensus

 Store chosen value, state of the decision process

 Want to know which value was chosen

For this presentation:

 Each Paxos server contains both components

March 1, 2013 Implementing Replicated Logs with Paxos Slide 5

Paxos Components

● Simple (incorrect) approach:

a single acceptor chooses

value

● What if acceptor crashes

after choosing?

● Solution: quorum

 Multiple acceptors (3, 5, ...)

 Value v is chosen if accepted by

majority of acceptors

 If one acceptor crashes, chosen

value still available

March 1, 2013 Implementing Replicated Logs with Paxos Slide 6

Strawman: Single Acceptor

Proposers

Acceptor

add jmp shl sub

jmp

● Acceptor accepts only first value it receives?

● If simultaneous proposals, no value might be chosen

Acceptors must sometimes accept multiple (different)

values

March 1, 2013 Implementing Replicated Logs with Paxos Slide 7

Problem: Split Votes

time

s1

s2

s3

s4

s5

accept?(red)

accept?(blue)

accept?(green)

accepted(red)

accepted(blue)

accepted(green)

accepted(red)

accepted(blue)

● Acceptor accepts every value it receives?

● Could choose multiple values

Once a value has been chosen, future proposals must

propose/choose that same value (2-phase protocol)

March 1, 2013 Implementing Replicated Logs with Paxos Slide 8

Problem: Conflicting Choices

time

s1

s2

s3

s4

s5

accept?(red)

accept?(blue)

accepted(red)

accepted(red)

accepted(blue)

accepted(red)

accepted(blue)

accepted(blue)

Red Chosen

Blue Chosen ● s5 needn’t propose red (it hasn’t been chosen yet)

● s1’s proposal must be aborted (s3 must reject it)

Must order proposals, reject old ones

March 1, 2013 Implementing Replicated Logs with Paxos Slide 9

Conflicting Choices, cont’d

time

s1

s2

s3

s4

s5

accept?(red)

prop(blue)

accepted(red)

accepted(red)

accepted(blue)

accepted(red)

accepted(blue)

accepted(blue)

Red Chosen??

Blue Chosen

● Each proposal has a unique number

 Higher numbers take priority over lower numbers

 It must be possible for a proposer to choose a new proposal

number higher than anything it has seen/used before

● One simple approach:

 Each server stores maxRound: the largest Round Number it has

seen so far

 To generate a new proposal number:
● Increment maxRound

● Concatenate with Server Id

 Proposers must persist maxRound on disk: must not reuse

proposal numbers after crash/restart
March 1, 2013 Implementing Replicated Logs with Paxos Slide 10

Proposal Numbers

Server Id Round Number

Proposal Number

Two-phase approach:

● Phase 1: broadcast Prepare RPCs

 Find out about any chosen values

 Block older proposals that have not yet completed

● Phase 2: broadcast Accept RPCs

 Ask acceptors to accept a specific value

March 1, 2013 Implementing Replicated Logs with Paxos Slide 11

Basic Paxos Basic Paxos
Acceptors

3) Respond to Prepare(n):
 If n > minProposal then minProposal = n

 Return(acceptedProposal, acceptedValue)

6) Respond to Accept(n, value):
 If n ≥ minProposal then

 acceptedProposal = minProposal = n

 acceptedValue = value

 Return(minProposal)

March 1, 2013 Implementing Replicated Logs with Paxos Slide 12

Acceptors must record minProposal, acceptedProposal,

and acceptedValue on stable storage (disk)

Proposers

1) Choose new proposal number n

2) Broadcast Prepare(n) to all

servers

4) When responses received from

majority:
 If any acceptedValues returned, replace

value with acceptedValue

for highest acceptedProposal

5) Broadcast Accept(n, value) to all

servers

6) When responses received from

majority:
 Any rejections (result > n)? goto (1)

 Otherwise, value is chosen

Three possibilities when later proposal prepares:

1. Previous value already chosen:

 New proposer will find it and use it

March 1, 2013 Implementing Replicated Logs with Paxos Slide 13

Basic Paxos Examples

time

s1

s2

s3

s4

s5

P 4.5

A 3.1 X P 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

“Prepare proposal 3.1 (from s1)”

“Accept proposal 4.5

with value X (from s5)”

X

Y

values

Three possibilities when later proposal prepares:

2. Previous value not chosen, but new proposer sees it:

 New proposer will use existing value

 Both proposers can succeed

March 1, 2013 Implementing Replicated Logs with Paxos Slide 14

Basic Paxos Examples, cont’d

time

s1

s2

s3

s4

s5

P 4.5

A 3.1 X P 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

X

Y

values

Three possibilities when later proposal prepares:

3. Previous value not chosen, new proposer doesn’t

see it:

 New proposer chooses its own value

 Older proposal blocked

March 1, 2013 Implementing Replicated Logs with Paxos Slide 15

Basic Paxos Examples, cont’d

time

s1

s2

s3

s4

s5

P 4.5

A 3.1 X P 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 Y

A 4.5 Y

A 4.5 Y

X

Y

values

● Competing proposers can livelock:

● One solution: randomized delay before restarting

 Give other proposers a chance to finish choosing

● Multi-Paxos will use leader election instead

March 1, 2013 Implementing Replicated Logs with Paxos Slide 16

Liveness

time

s1

s2

s3

s4

s5

A 3.1 X P 3.1

P 3.5

A 3.5 Y

P 3.1

P 3.1

P 3.5

P 3.5

A 3.1 X

A 3.1 X

P 4.1

P 4.1

P 4.1

A 3.5 Y

A 3.5 Y

P 5.5

P 5.5

P 5.5 A 4.1 X

A 4.1 X

A 4.1 X

● Only proposer knows which value has been chosen

● If other servers want to know, must execute Paxos

with their own proposal

March 1, 2013 Implementing Replicated Logs with Paxos Slide 17

Other Notes

● Separate instance of Basic Paxos for each entry in

the log:

 Add index argument to Prepare and Accept (selects entry in log)

March 1, 2013 Implementing Replicated Logs with Paxos Slide 18

Multi-Paxos

add jmp mov shl

Log

Consensus
Module

State
Machine

Server

Client

shl

Other

Servers

1. Client sends command

to server

2. Server uses Paxos to

choose command as

value for a log entry

3. Server waits for previous

log entries to be applied,

then applies new command

to state machine

4. Server returns result

from state machine to

client

● Which log entry to use for a given client request?

● Performance optimizations:

 Use leader to reduce proposer conflicts

 Eliminate most Prepare requests

● Ensuring full replication

● Client protocol

● Configuration changes

Note: Multi-Paxos not specified precisely in literature

March 1, 2013 Implementing Replicated Logs with Paxos Slide 19

Multi-Paxos Issues

cmp

● When request arrives from client:

 Find first log entry not known to be chosen

 Run Basic Paxos to propose client’s command for this index

 Prepare returns acceptedValue?

● Yes: finish choosing acceptedValue, start again

● No: choose client’s command

March 1, 2013 Implementing Replicated Logs with Paxos Slide 20

Selecting Log Entries

mov add

cmp

ret

1 2 3 4 5 6 7

s1

sub mov add ret s2

cmp mov add ret s3

cmp mov add

shl

ret

1 2 3 4 5 6 7

s1

sub mov add ret s2

cmp mov add ret s3

cmp

sub jmp

jmp

jmp Known Chosen

Logs Before Logs After

● Servers can handle multiple client requests

concurrently:

 Select different log entries for each

● Must apply commands to state machine in log order

March 1, 2013 Implementing Replicated Logs with Paxos Slide 21

Selecting Log Entries, cont’d

● Using Basic Paxos is inefficient:

 With multiple concurrent proposers, conflicts and restarts are

likely (higher load → more conflicts)

 2 rounds of RPCs for each value chosen (Prepare, Accept)

Solution:

1. Pick a leader

 At any given time, only one server acts as Proposer

2. Eliminate most Prepare RPCs

 Prepare once for the entire log (not once per entry)

 Most log entries can be chosen in a single round of RPCs

March 1, 2013 Implementing Replicated Logs with Paxos Slide 22

Improving Efficiency

One simple approach from Lamport:

● Let the server with highest ID act as leader

● Each server sends a heartbeat message to every

other server every T ms

● If a server hasn’t received heartbeat from server with

higher ID in last 2T ms, it acts as leader:

 Accepts requests from clients

 Acts as proposer and acceptor

● If server not leader:

 Rejects client requests (redirect to leader)

 Acts only as acceptor

March 1, 2013 Implementing Replicated Logs with Paxos Slide 23

Leader Election

● Why is Prepare needed?

 Block old proposals

● Make proposal numbers refer to the entire log, not just one entry

 Find out about (possibly) chosen values

● Return highest proposal accepted for current entry

● Also return noMoreAccepted: no proposals accepted for any log

entry beyond current one

● If acceptor responds to Prepare with

noMoreAccepted, skip future Prepares with that

acceptor (until Accept rejected)

● Once leader receives noMoreAccepted from majority

of acceptors, no need for Prepare RPCs

 Only 1 round of RPCs needed per log entry (Accepts)

March 1, 2013 Implementing Replicated Logs with Paxos Slide 24

Eliminating Prepares

● So far, information flow is incomplete:

 Log entries not fully replicated (majority only)

Goal: full replication

 Only proposer knows when entry is chosen

Goal: all servers know about chosen entries

● Solution part 1/4: keep retrying Accept RPCs until all

acceptors respond (in background)

 Fully replicates most entries

● Solution part 2/4: track chosen entries

 Mark entries that are known to be chosen:

acceptedProposal[i] = ∞

 Each server maintains firstUnchosenIndex: index of earliest log

entry not marked as chosen

March 1, 2013 Implementing Replicated Logs with Paxos Slide 25

Full Disclosure

● Solution part 3/4: proposer tells acceptors about

chosen entries

 Proposer includes its firstUnchosenIndex in Accept RPCs.

 Acceptor marks all entries i chosen if:

● i < request.firstUnchosenIndex

● acceptedProposal[i] == request.proposal

 Result: acceptors know about most chosen entries

Still don’t have complete information
March 1, 2013 Implementing Replicated Logs with Paxos Slide 26

Full Disclosure, cont’d

∞

1 2 3 4 5 6 7 8 9 log index

2.5 ∞ ∞ ∞ 3.4 acceptedProposal before Accept

... Accept(proposal = 3.4, index=8, value = v, firstUnchosenIndex = 7) ...

∞ 2.5 ∞ ∞ ∞ 3.4 after Accept ∞

● Solution part 4/4: entries from old leaders

 Acceptor returns its firstUnchosenIndex in Accept replies

 If proposer’s firstUnchosenIndex > firstUnchosenIndex from

response, then proposer sends Success RPC (in background)

● Success(index, v): notifies acceptor of chosen entry:

 acceptedValue[index] = v

 acceptedProposal[index] = ∞

 return firstUnchosenIndex

 Proposer sends additional Success RPCs, if needed

March 1, 2013 Implementing Replicated Logs with Paxos Slide 27

Full Disclosure, cont’d

● Send commands to leader

 If leader unknown, contact any server

 If contacted server not leader, it will redirect to leader

● Leader does not respond until command has been

chosen for log entry and executed by leader’s state

machine

● If request times out (e.g., leader crash):

 Client reissues command to some other server

 Eventually redirected to new leader

 Retry request with new leader

March 1, 2013 Implementing Replicated Logs with Paxos Slide 28

Client Protocol

● What if leader crashes after executing command but

before responding?
 Must not execute command twice

● Solution: client embeds a unique id in each

command
 Server includes id in log entry

 State machine records most recent command executed for each

client

 Before executing command, state machine checks to see if

command already executed, if so:
● Ignore new command

● Return response from old command

● Result: exactly-once semantics as long as client

doesn’t crash

March 1, 2013 Implementing Replicated Logs with Paxos Slide 29

Client Protocol, cont’d

● System configuration:

 ID, address for each server

 Determines what constitutes a majority

● Consensus mechanism must support changes in the

configuration:

 Replace failed machine

 Change degree of replication

March 1, 2013 Implementing Replicated Logs with Paxos Slide 30

Configuration Changes

● Safety requirement:

 During configuration changes, it must not be possible for

different majorities to choose different values for the same log

entry:

March 1, 2013 Implementing Replicated Logs with Paxos Slide 31

Configuration Changes, cont’d

Old Configuration

New Configuration

Choose v2 using

new configuration

Choose v1 using

old configuration

● Paxos solution: use the log to manage configuration

changes:

 Configuration is stored as a log entry

 Replicated just like any other log entry

 Configuration for choosing entry i determined by entry i-α.

Suppose α = 3:

● Notes:

 α limits concurrency: can’t choose entry i+α until entry i chosen

 Issue no-op commands if needed to complete change quickly

March 1, 2013 Implementing Replicated Logs with Paxos Slide 32

Configuration Changes, cont’d

C1 C2

Use C0 Use C1 Use C2

1 2 3 4 5 6 7 8 9 10

● Basic Paxos:

 Prepare phase

 Accept phase

● Multi-Paxos:

 Choosing log entries

 Leader election

 Eliminating most Prepare requests

 Full information propagation

● Client protocol

● Configuration changes

March 1, 2013 Implementing Replicated Logs with Paxos Slide 33

Paxos Summary

9

Raft lecture: Raft: A Consensus Algorithm
for Replicated Logs

Diego Ongaro and John Ousterhout

Stanford University
 ● Replicated log => replicated state machine

 All servers execute same commands in same order

● Consensus module ensures proper log replication

● System makes progress as long as any majority of servers are up

● Failure model: fail-stop (not Byzantine), delayed/lost messages

March 3, 2013 Raft Consensus Algorithm Slide 2

Goal: Replicated Log

add jmp mov shl

Log

Consensus
Module

State
Machine

add jmp mov shl

Log

Consensus
Module

State
Machine

add jmp mov shl

Log

Consensus
Module

State
Machine

Servers

Clients

shl

Two general approaches to consensus:

● Symmetric, leader-less:

 All servers have equal roles

 Clients can contact any server

● Asymmetric, leader-based:

 At any given time, one server is in charge, others accept its

decisions

 Clients communicate with the leader

● Raft uses a leader:

 Decomposes the problem (normal operation, leader changes)

 Simplifies normal operation (no conflicts)

 More efficient than leader-less approaches

March 3, 2013 Raft Consensus Algorithm Slide 3

Approaches to Consensus

1. Leader election:

 Select one of the servers to act as leader

 Detect crashes, choose new leader

2. Normal operation (basic log replication)

3. Safety and consistency after leader changes

4. Neutralizing old leaders

5. Client interactions

 Implementing linearizeable semantics

6. Configuration changes:

 Adding and removing servers

March 3, 2013 Raft Consensus Algorithm Slide 4

Raft Overview

● At any given time, each server is either:

 Leader: handles all client interactions, log replication

● At most 1 viable leader at a time

 Follower: completely passive (issues no RPCs, responds to

incoming RPCs)

 Candidate: used to elect a new leader

● Normal operation: 1 leader, N-1 followers

March 3, 2013 Raft Consensus Algorithm Slide 5

Server States

Follower Candidate Leader

start
timeout,

start election
receive votes from
majority of servers

timeout,
new election

discover server with
 higher term discover current server

or higher term

“step
down”

● Time divided into terms:

 Election

 Normal operation under a single leader

● At most 1 leader per term

● Some terms have no leader (failed election)

● Each server maintains current term value

● Key role of terms: identify obsolete information

March 3, 2013 Raft Consensus Algorithm Slide 6

Terms

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal Operation Split Vote

March 3, 2013 Raft Consensus Algorithm Slide 7

• Respond to RPCs from candidates and leaders.

• Convert to candidate if election timeout elapses without

either:

• Receiving valid AppendEntries RPC, or

• Granting vote to candidate

Followers

• Increment currentTerm, vote for self

• Reset election timeout

• Send RequestVote RPCs to all other servers, wait for either:

• Votes received from majority of servers: become leader

• AppendEntries RPC received from new leader: step

down

• Election timeout elapses without election resolution:

increment term, start new election

• Discover higher term: step down

Candidates

Each server persists the following to stable storage

synchronously before responding to RPCs:

currentTerm latest term server has seen (initialized to 0

on first boot)

votedFor candidateId that received vote in current

term (or null if none)

log[] log entries

Persistent State

term term when entry was received by leader

index position of entry in the log

command command for state machine

Log Entry

Invoked by candidates to gather votes.

Arguments:

candidateId candidate requesting vote

term candidate's term

lastLogIndex index of candidate's last log entry

lastLogTerm term of candidate's last log entry

Results:

term currentTerm, for candidate to update itself

voteGranted true means candidate received vote

Implementation:

1. If term > currentTerm, currentTerm ← term

(step down if leader or candidate)

2. If term == currentTerm, votedFor is null or candidateId,

and candidate's log is at least as complete as local log,

grant vote and reset election timeout

RequestVote RPC

Invoked by leader to replicate log entries and discover

inconsistencies; also used as heartbeat .

Arguments:

term leader's term

leaderId so follower can redirect clients

prevLogIndex index of log entry immediately preceding

new ones

prevLogTerm term of prevLogIndex entry

entries[] log entries to store (empty for heartbeat)

commitIndex last entry known to be committed

Results:

term currentTerm, for leader to update itself

success true if follower contained entry matching

prevLogIndex and prevLogTerm

Implementation:

1. Return if term < currentTerm

2. If term > currentTerm, currentTerm ← term

3. If candidate or leader, step down

4. Reset election timeout

5. Return failure if log doesn’t contain an entry at

prevLogIndex whose term matches prevLogTerm

6. If existing entries conflict with new entries, delete all

existing entries starting with first conflicting entry

7. Append any new entries not already in the log

8. Advance state machine with newly committed entries

AppendEntries RPC

Raft Protocol Summary

• Initialize nextIndex for each to last log index + 1

• Send initial empty AppendEntries RPCs (heartbeat) to each

follower; repeat during idle periods to prevent election

timeouts

• Accept commands from clients, append new entries to local

log

• Whenever last log index ≥ nextIndex for a follower, send

AppendEntries RPC with log entries starting at nextIndex,

update nextIndex if successful

• If AppendEntries fails because of log inconsistency,

decrement nextIndex and retry

• Mark log entries committed if stored on a majority of

servers and at least one entry from current term is stored on

a majority of servers

• Step down if currentTerm changes

Leaders

● Servers start up as followers

● Followers expect to receive RPCs from leaders or

candidates

● Leaders must send heartbeats (empty

AppendEntries RPCs) to maintain authority

● If electionTimeout elapses with no RPCs:

 Follower assumes leader has crashed

 Follower starts new election

 Timeouts typically 100-500ms

March 3, 2013 Raft Consensus Algorithm Slide 8

Heartbeats and Timeouts

● Increment current term

● Change to Candidate state

● Vote for self

● Send RequestVote RPCs to all other servers, retry

until either:

1. Receive votes from majority of servers:

● Become leader

● Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:

● Return to follower state

3. No-one wins election (election timeout elapses):

● Increment term, start new election

March 3, 2013 Raft Consensus Algorithm Slide 9

Election Basics

● Safety: allow at most one winner per term

 Each server gives out only one vote per term (persist on disk)

 Two different candidates can’t accumulate majorities in same

term

● Liveness: some candidate must eventually win

 Choose election timeouts randomly in [T, 2T]

 One server usually times out and wins election before others

wake up

 Works well if T >> broadcast time

March 3, 2013 Raft Consensus Algorithm Slide 10

Elections, cont’d

Servers

Voted for

candidate A

B can’t also

get majority

● Log entry = index, term, command

● Log stored on stable storage (disk); survives crashes

● Entry committed if known to be stored on majority of servers
 Durable, will eventually be executed by state machines

March 3, 2013 Raft Consensus Algorithm Slide 11

Log Structure

1
add

1 2 3 4 5 6 7 8

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log index

followers

committed entries

term

command

● Client sends command to leader

● Leader appends command to its log

● Leader sends AppendEntries RPCs to followers

● Once new entry committed:
 Leader passes command to its state machine, returns result to

client

 Leader notifies followers of committed entries in subsequent

AppendEntries RPCs

 Followers pass committed commands to their state machines

● Crashed/slow followers?

 Leader retries RPCs until they succeed

● Performance is optimal in common case:
 One successful RPC to any majority of servers

March 3, 2013 Raft Consensus Algorithm Slide 12

Normal Operation

High level of coherency between logs:

● If log entries on different servers have same index

and term:

 They store the same command

 The logs are identical in all preceding entries

● If a given entry is committed, all preceding entries

are also committed

March 3, 2013 Raft Consensus Algorithm Slide 13

Log Consistency

1
add

1 2 3 4 5 6

3
jmp

1
cmp

1
ret

2
mov

3
div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

● Each AppendEntries RPC contains index, term of

entry preceding new ones

● Follower must contain matching entry; otherwise it

rejects request

● Implements an induction step, ensures coherency

March 3, 2013 Raft Consensus Algorithm Slide 14

AppendEntries Consistency Check

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

1 2 3 4 5

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:

matching entry

AppendEntries fails:

mismatch

● At beginning of new leader’s term:

 Old leader may have left entries partially replicated

 No special steps by new leader: just start normal operation

 Leader’s log is “the truth”

 Will eventually make follower’s logs identical to leader’s

 Multiple crashes can leave many extraneous log entries:

March 3, 2013 Raft Consensus Algorithm Slide 15

Leader Changes

1 2 3 4 5 6 7 8 log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 4 1

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5

Once a log entry has been applied to a state machine,

no other state machine must apply a different value for

that log entry

● Raft safety property:

 If a leader has decided that a log entry is committed, that entry

will be present in the logs of all future leaders

● This guarantees the safety requirement

 Leaders never overwrite entries in their logs

 Only entries in the leader’s log can be committed

 Entries must be committed before applying to state machine

March 3, 2013 Raft Consensus Algorithm Slide 16

Safety Requirement

Committed → Present in future leaders’ logs

Restrictions on

commitment

Restrictions on

leader election

● Can’t tell which entries are committed!

● During elections, choose candidate with log most

likely to contain all committed entries

 Candidates include log info in RequestVote RPCs

(index & term of last log entry)

 Voting server V denies vote if its log is “more complete”:

(lastTermV > lastTermC) ||

(lastTermV == lastTermC) && (lastIndexV > lastIndexC)

 Leader will have “most complete” log among electing majority
March 3, 2013 Raft Consensus Algorithm Slide 17

Picking the Best Leader

1 2 1 1 2

1 2 3 4 5

1 2 1 1

1 2 1 1 2
unavailable during
leader transition

committed?

● Case #1/2: Leader decides entry in current term is

committed

● Safe: leader for term 3 must contain entry 4

March 3, 2013 Raft Consensus Algorithm Slide 18

Committing Entry from Current Term

1 2 3 4 5 6

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2

AppendEntries just
succeeded

Can’t be elected as
leader for term 3

Leader for
term 2

● Case #2/2: Leader is trying to finish committing entry

from an earlier term

● Entry 3 not safely committed:
 s5 can be elected as leader for term 5

 If elected, it will overwrite entry 3 on s1, s2, and s3!

March 3, 2013 Raft Consensus Algorithm Slide 19

Committing Entry from Earlier Term

1 2 3 4 5 6

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2
AppendEntries just
succeeded

3

4

3

Leader for
term 4

3

● For a leader to decide an

entry is committed:

 Must be stored on a majority

of servers

 At least one new entry from

leader’s term must also be

stored on majority of servers

● Once entry 4 committed:

 s5 cannot be elected leader

for term 5

 Entries 3 and 4 both safe

March 3, 2013 Raft Consensus Algorithm Slide 20

New Commitment Rules

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

Leader for
term 4

4

4

Combination of election rules and commitment rules

makes Raft safe

3

Leader changes can result in log inconsistencies:

March 3, 2013 Raft Consensus Algorithm Slide 21

Log Inconsistencies

1 4 1 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12 log index

leader for
term 8

1 4 1 1 4 5 5 6 6

1 4 1 1

1 4 1 1 4 5 5 6 6 6 6

1 4 1 1 4 5 5 6 6 6

1 4 1 1 4

1 1 1

possible
followers

4 4

7 7

2 2 3 3 3 3 3 2

(a)

(b)

(c)

(d)

(e)

(f)

Extraneous

Entries

Missing

Entries

March 3, 2013 Raft Consensus Algorithm

● New leader must make follower logs consistent with its own

 Delete extraneous entries

 Fill in missing entries

● Leader keeps nextIndex for each follower:

 Index of next log entry to send to that follower

 Initialized to (1 + leader’s last index)

● When AppendEntries consistency check fails, decrement

nextIndex and try again:

Repairing Follower Logs

1 4 1 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12 log index

leader for term 7

1 4 1 1

1 1 1
followers

2 2 3 3 3 3 3 2

(a)

(b)

nextIndex

Slide 22

● When follower overwrites inconsistent entry, it

deletes all subsequent entries:

March 3, 2013 Raft Consensus Algorithm Slide 23

Repairing Logs, cont’d

1 4 1 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 log index

leader for term 7

1 1 1 follower (before) 2 2 3 3 3 3 3 2

nextIndex

1 1 1 follower (after) 4

● Deposed leader may not be dead:

 Temporarily disconnected from network

 Other servers elect a new leader

 Old leader becomes reconnected, attempts to commit log entries

● Terms used to detect stale leaders (and candidates)

 Every RPC contains term of sender

 If sender’s term is older, RPC is rejected, sender reverts to

follower and updates its term

 If receiver’s term is older, it reverts to follower, updates its term,

then processes RPC normally

● Election updates terms of majority of servers

 Deposed server cannot commit new log entries

March 3, 2013 Raft Consensus Algorithm Slide 24

Neutralizing Old Leaders

● Send commands to leader

 If leader unknown, contact any server

 If contacted server not leader, it will redirect to leader

● Leader does not respond until command has been

logged, committed, and executed by leader’s state

machine

● If request times out (e.g., leader crash):

 Client reissues command to some other server

 Eventually redirected to new leader

 Retry request with new leader

March 3, 2013 Raft Consensus Algorithm Slide 25

Client Protocol

● What if leader crashes after executing command, but

before responding?

 Must not execute command twice

● Solution: client embeds a unique id in each

command

 Server includes id in log entry

 Before accepting command, leader checks its log for entry with

that id

 If id found in log, ignore new command, return response from old

command

● Result: exactly-once semantics as long as client

doesn’t crash

March 3, 2013 Raft Consensus Algorithm Slide 26

Client Protocol, cont’d

● System configuration:

 ID, address for each server

 Determines what constitutes a majority

● Consensus mechanism must support changes in the

configuration:

 Replace failed machine

 Change degree of replication

March 3, 2013 Raft Consensus Algorithm Slide 27

Configuration Changes

Cannot switch directly from one configuration to

another: conflicting majorities could arise

March 3, 2013 Raft Consensus Algorithm Slide 28

Configuration Changes, cont’d

Cold Cnew

Server 1

Server 2

Server 3

Server 4

Server 5

Majority of Cold

Majority of Cnew

time

March 3, 2013 Raft Consensus Algorithm Slide 29

● Raft uses a 2-phase approach:

 Intermediate phase uses joint consensus (need majority of both

old and new configurations for elections, commitment)

 Configuration change is just a log entry; applied immediately on

receipt (committed or not)

 Once joint consensus is committed, begin replicating log entry

for final configuration

Joint Consensus

time Cold+new entry

committed

Cnew entry

committed

Cold

Cold+new

Cnew

Cold can make

unilateral decisions

Cnew can make

unilateral decisions

● Additional details:

 Any server from either configuration can serve as leader

 If current leader is not in Cnew, must step down once Cnew is

committed.

March 3, 2013 Raft Consensus Algorithm Slide 30

Joint Consensus, cont’d

time Cold+new entry

committed

Cnew entry

committed

Cold

Cold+new

Cnew

Cold can make

unilateral decisions

Cnew can make

unilateral decisions

leader not in Cnew

steps down here

1. Leader election

2. Normal operation

3. Safety and consistency

4. Neutralize old leaders

5. Client protocol

6. Configuration changes

March 3, 2013 Raft Consensus Algorithm Slide 31

Raft Summary

10

Quiz challenge: maintain equal difficulty

I Easy questions (4 points): warm-up

I Medium questions (26 points): apply algorithm

I Hard questions (30 points): not clear which
algorithm to apply

I Paired question difficulty across exams

11

Quiz results

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

R
af

t g
ra

de

Paxos grade

Raft then Paxos
Paxos then Raft

12

Ordering effects

 0

 10

 20

 30

 40

 50

 60

Raft first Paxos first

G
ra

de
Raft grade

Paxos grade

13

Survey results

 0

 5

 10

 15

 20

implement explain

nu
m

be
r o

f p
ar

tic
ip

an
ts

Paxos much easier
Paxos somewhat easier
Roughly equal
Raft somewhat easier
Raft much easier

14

Recent popularity
A bunch of open-source Raft implementations:

Bloom 3
C++ 1
Erlang 4
F# 1
Go 2
Haskell 1
Java 2

Upcoming talks:

I StrangeLoop (Ben Johnson of go-raft, September)

I RICON West (Diego, October)
15

Conclusions

I Really hard to measure understandability
I 99% of effort before getting any results

I Students averaged 23% better on Raft quiz

I Survey showed overwhelming support for Raft

I Recent academic and industrial interest is
encouraging

I Under submission...

http://ramcloud.stanford.edu/raft.pdf

16

Acknowledgements

I Scott Klemmer for help with experimental design

I David Mazières and Ali Ghodsi for their guinea pigs

I “Volunteers” for pilots: Aleks, Amit, Ankita,
Arjun, Daniel, David, and Vimal

I The 48 participants

I Nelson Ray for his stats help

17

