
Low Latency Transport Scheme For Datacenter Networks
*Behnam Montazeri, **Mohammad Alizadeh, *John Ousterhout

*Stanford University, **Massachusetts Institute of Technology and Cisco
SECDL/PlatformLab Retreat, May 2015

 RAMCloud RPC relies on Infiniband reliable transport
 Infiniband has scalability issues and not considered commodity
We want to achieve low latency over unreliable datagrams
 FastTransport is a primitive transport layer
 Provides reliability for datagram protocols
 Lacks congestion control
 Not scalable
 Designing a new reliable transport protocol
 Fit for datacenter networks
 Tailored for RPC systems

Motivations

RAMCloud

 Low Latency
 As close as possible to hardware limits
 Minimal buffer usage
 Scalability
 Millions of client connections per server
 Minimal per client state
 Congestion Control
 Low latency for small request in presence of high network utilization

Objectives

 Full Bisection Band Width
 Low latency
 Load Balanced
 Switches Provide few priority levels
 Network delays are not fixed

Network Assumptions

Spine Fabric

TOR

Aggregation

Core

Big Fat Switch

Rack

 Congestion primarily
at receiver’s TOR

 Receiver Knows Msg. Sizes
 Receiver’s the right place

to do Congestions control

Congestion Primarily At Receiver’s TOR

Sender 0

Receiver
.
.
.

Sender N

Network

TOR

 Sender sends request that specifies the message size
 Receiver grants permission for transmission
 Grants are sent in fine grained time intervals

Receiver Side Scheduler

Sender

Receiver

Request

Sender

Receiver

Network

Grants

Scheduled

Packets

 Favor Shortest Request (Shortest Remaining Bytes First)
 Use grants to preempt scheduled large requests

Preemption By Tokens

Sender 1

Receiver

Request

1

Grants

Sender 2

Request

2

Sender 1

Receiver

Network

Sender 2

Scheduled

Packets

Req. 1 > Req. 2

 Small Unscheduled Traffic covers
for one RTT latency overhead

Unscheduled Traffic

Sender

Receiver

Request

Grants

Scheduled

Packets

Unscheduled

Packets

With unscheduled traffic, multiple senders cause buffer build

 Buffer adds latency
 Buffer limits our ability

to preempt large requests
for shorter ones

Problem: Buffer Buildup

Unsched.

Unsched.

0 0.5 x RTT1.0 1.5 2.0

Unsched.

GG

Sender 1

Sender 2

Receiver

Buffer

Size

2.5

GG G

S3 S4S2S1

Delivered to RX

TOR Queue

S5

GG GG G

S6 S7 S8 S9 S10

 Bytes are added to the bucket at link rate
 Bucket level is capped at BDP = C x RTT
 Unscheduled traffic will be subtracted from bucket

Buffer Buildup: Solution

Receiver

Sorted requests
Remove

Token

Grants To

Sender

Holds up to

BDP Bytes

Add tokens at link rate

Unsched.

Unsched.

0 0.5 x RTT1.0 1.5 2.0

Unsched.

GG

Sender 1

Sender 2

Receiver

TOR Queue

2.5

G G

S3S2

Byte

Bucket

S2S1 S3

S4

S4 S5

C x RTT

Delivered to RX

G

S5S1

Problem: Too Much Unscheduled Traffic

Unsched.

Unsched.

0 0.5

x RTT

1.0 1.5 2.0

Unsched.

TT

Sender 2

Sender 3

Receiver

2.5

TT T

G2G1

Byte

Bucket

G2G1 G3 G4 G5

C x RTT

Unsched.
Sender 1

G3 G4 G5

Receiver loses control over scheduled traffic

if too much unscheduled traffic is sent.

 Algorithm needs to be polished and finished
 The effect of random delay variations must be taken into account
 Limited number of priorities can be used for preemption
 Higher priority for short requests
 Different priority level within unscheduled and/or scheduled traffic
 Simulation and implementation of yet to be done

Work Status

