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 RAMCloud RPC relies on Infiniband reliable transport
 Infiniband has scalability issues and not considered commodity
We want to achieve low latency over unreliable datagrams
 FastTransport is a primitive transport layer
 Provides reliability for datagram protocols
 Lacks congestion control
 Not scalable
 Designing a new reliable transport protocol 
 Fit for datacenter networks
 Tailored for RPC systems

Motivations

RAMCloud

 Low Latency
 As close as possible to hardware limits
 Minimal buffer usage
 Scalability
 Millions of client connections per server 
 Minimal per client state
 Congestion Control 
 Low latency for small request in presence of high network utilization

Objectives

 Full Bisection Band Width
 Low latency
 Load Balanced
 Switches Provide few priority levels
 Network delays are not fixed
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 Receiver Knows Msg. Sizes
 Receiver’s the right place

to do Congestions control

Congestion Primarily At Receiver’s TOR
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 Sender sends request that specifies the message size
 Receiver grants permission for transmission
 Grants are sent in fine grained time intervals 

Receiver Side Scheduler
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 Favor Shortest Request (Shortest Remaining Bytes First)
 Use grants to preempt scheduled large requests

Preemption By Tokens
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 Small Unscheduled Traffic covers 
for one RTT latency overhead

Unscheduled Traffic
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With unscheduled traffic, multiple senders cause buffer build 

 Buffer adds latency
 Buffer limits our ability

to preempt large requests
for shorter ones

Problem: Buffer Buildup
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 Bytes are added to the bucket at link rate
 Bucket level is capped at BDP = C x RTT
 Unscheduled traffic will be subtracted from bucket

Buffer Buildup: Solution
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Problem: Too Much Unscheduled Traffic
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Receiver loses control over scheduled traffic 

if too much unscheduled traffic is sent.

 Algorithm needs to be polished and finished
 The effect of random delay variations must be taken into account
 Limited number of priorities can be used for preemption
 Higher priority for short requests 
 Different priority level within unscheduled and/or scheduled traffic
 Simulation and implementation of yet to be done
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