
RamCloud Latency: Early Analysis

Henry Qin
Advisor: John Ousterhout

June 15, 2014

1 / 23



This talk is about latency, not throughput.

Measurement, not optimization.

The results here are preliminary, not
complete.



Ultimate Goal: Where are the costs?

Where is that time going?
How much can it be improved?
What are the fundamental limits?

We will not answer these questions today.
But today’s talk used these questions as a guide.

3 / 23



Ultimate Goal: Where are the costs?

Where is that time going?
How much can it be improved?
What are the fundamental limits?

We will not answer these questions today.

But today’s talk used these questions as a guide.

3 / 23



Ultimate Goal: Where are the costs?

Where is that time going?
How much can it be improved?
What are the fundamental limits?

We will not answer these questions today.
But today’s talk used these questions as a guide.

3 / 23



Contributions

Thread handoff latency is primarily from cache misses.

We have 1.5 µs of overhead and 460 ns of RPC servicing
work.

A measurement system which can be selectively disabled
at compile time.

4 / 23



5 / 23



The One Number

The most touted number about RamCloud read latency
is 5 us.

It is the median of measurements from reading the same
100-byte object with a 30-byte key over Infiniband,
100000 times.

What do the other 99999 measurements look like?

6 / 23



The One Number

The most touted number about RamCloud read latency
is 5 us.

It is the median of measurements from reading the same
100-byte object with a 30-byte key over Infiniband,
100000 times.

What do the other 99999 measurements look like?

6 / 23



The One Number

The most touted number about RamCloud read latency
is 5 us.

It is the median of measurements from reading the same
100-byte object with a 30-byte key over Infiniband,
100000 times.

What do the other 99999 measurements look like?

6 / 23



0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

End To End Read of 100 Byte Object

Time (usec)

F
ra

ct
io

n

99.99% 102µs

Median Latency 5µs

7 / 23



Current Threading Model

Dispatch Worker

RpcRequest
RpcRequest

RpcResponse

Incoming Rpc

Return To Client

Response
Generate

Dispatch To Worker

Worker To Dispatch

8 / 23



Experimental Design

Dispatch

Incoming Rpc

Return To Client

Response
Generate

9 / 23



0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

End To End Read of 100 Byte Object

Time (usec)

F
ra

ct
io

n

Threading 5.06µsSerial 4.71µs

300 ns difference!

10 / 23



0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

End To End Read of 100 Byte Object

Time (usec)

F
ra

ct
io

n

Threading 5.06µsSerial 4.71µs
300 ns difference!

10 / 23



(L2) Cache Misses

Serial Execution: 3 misses

Multithreaded: 25 misses

Cost of L2 Cache Miss: 13 ns

(25 − 3)× 13 = 286 ns

Takeaway: Do not run a single instance of RamCloud
that spans multiple sockets, or you will get L3 cache
misses instead of L2!

11 / 23



(L2) Cache Misses

Serial Execution: 3 misses

Multithreaded: 25 misses

Cost of L2 Cache Miss: 13 ns

(25 − 3)× 13 = 286 ns

Takeaway: Do not run a single instance of RamCloud
that spans multiple sockets, or you will get L3 cache
misses instead of L2!

11 / 23



(L3) Cache Misses

Serial Execution: 3 misses

Multithreaded: 25 misses

Cost of L3 Cache Miss: 85 ns

(25 − 3)× 85 = 1870 ns

In practice, we observe a 1µs increase in latency when
we ran this experiment. We suspect hardware
prefetching is improving actual performance.

12 / 23



(L3) Cache Misses

Serial Execution: 3 misses

Multithreaded: 25 misses

Cost of L3 Cache Miss: 85 ns

(25 − 3)× 85 = 1870 ns

In practice, we observe a 1µs increase in latency when
we ran this experiment. We suspect hardware
prefetching is improving actual performance.

12 / 23



Thread handoff costs do not tell the whole story

Dispatch To Worker: 81.5 ns

Worker To Dispatch: 93.4 ns

13 / 23



14 / 23



Incidental Tidbits: Overhead of an RPC
Server Side Latency Breakdown

1.95 us0.00 us

initialDispatchWork
serviceWork

finalDispatchWork

0.70 us 0.68 us 0.57

15 / 23



Overhead of an RPC: A Closer Look
Server Side Latency Breakdown

1.95 us0.00 us

initialDispatchWork
serviceWorkPrefix

readHandler
serviceWorkSuffix
finalDispatchWork

0.70 us 0.46 us 0.57

readHandler takes only 460 ns out of 1.95 µs!

We have 1.49 µs of potential overhead overhead on the
server side.

16 / 23



Overhead of an RPC: A Closer Look
Server Side Latency Breakdown

1.95 us0.00 us

initialDispatchWork
serviceWorkPrefix

readHandler
serviceWorkSuffix
finalDispatchWork

0.70 us 0.46 us 0.57

readHandler takes only 460 ns out of 1.95 µs!

We have 1.49 µs of potential overhead overhead on the
server side.

16 / 23



17 / 23



Measurement System
Goals

Measure cache misses or cycles, or anything that can be
used in a start-stop fashion, such as branch
mispredictions.

Collect all measurements over a given time range, rather
than just keeping a running average.

Allow different groups of measurements to be enabled
and disabled together.

Allow measurement code to be permanetly left in
production code base, with no performance impact when
not compiled in.

18 / 23



Measurement System

Components
An framework for creating groups of measurements, and
allowing them to be enabled and disabled at compile-time.

Linux kernel modules to select hardware performance
counters and enable them to be read from userspace.

19 / 23



Lessons Learned and Funny Stories

Intel’s performance counters are somewhat arcane to
use, but they do not require black magic.

Ramcloud blows up if all global destructors are called.

The only reliable way to handle signals in a
multithreaded environment is to embrace multithreading
and start a new thread to do the cleanup.

20 / 23



Conclusion

Thread handoff latency is primarily from cache misses.

We have 1.5 µs of overhead and 460 ns of RPC servicing
work.

A measurement system which can be selectively disabled
at compile time.

21 / 23



Future Work

Optimization and tuning.
Can we reduce the 460 ns to read an object?
Can we work around the threading issues while
retaining responsiveness?

Broadening the scope.
Randomized reads, write RPC’s.
Latency vs throughput: Is there some fundamental
tradeoff?

22 / 23



Thank You!

To my awesome advisor John Ousterhout for his careful
guidance and eternal patience

To Ryan, Diego, Ankita, Collin, Jonathan and the rest of
my lab...for all the obvious reasons

To all of you, for staying awake!

23 / 23


