Log-Structured Memory for
DRAM-Based Storage

Stephen Rumble and John Ousterhout
Stanford University

Introduction

e Storage allocation: the impossible dream
= Fast allocation/deallocation
= Efficient use of memory
= Handle changing workloads

e RAMCloud: log-structured allocator
= |[ncremental garbage collector for both disk and DRAM

= Two-level approach to cleaning (separate policies for disk and
DRAM)

= Concurrent cleaning

e Results:
= High performance even at 80-90% memory utilization
= No pauses
= Handles changing workloads

October 3, 2013 Log-Structured Memory Slide 2

RAMCloud Overview

e Datacenter storage system

e Key-value store

1000 - 100,000 Application Servers

o All datain DRAM at all times 3 (e (2000

= Disk/flash for backup only (Ubrary] (Gbrary] [Liorary)
L

® Large Scale: Datacenter

Coordinator

Network
= 1000-10000 servers e
- _ . Master ﬁ\/lastea ﬁvlasteﬂ
100TB - 10PB capacity bocod bood booed

e Low laten cy: 1000 — 10,000 Storage Servers
= SUS remote access

May 23, 2013 RAMCloud: Building a Real System Slide 3

Workload Sensitivities

35
i w1 Es=
L 2 A
30 B ws W] S
B 4 NN ——. HraVRE EO——
8 251 ws o N . NG/
n 20 - W$ R B B %\ 7 |
= w8 N/l
m 15 F Live .
G 1o — g

glibc 21 2 malloc Hoard 3.9 jemal.lo.c 3.3.0 tcmélloc 2.0 merhcached JaVa 1.7 Boehm GC 7.2d
1.4.13 OpendDK
Allocators

e Allocators waste memory if workloads change:

= E.g., W2 (simulates schema change):
e Allocate 100B objects
e Gradually overwrite with 130B objects

e All existing allocators waste at least 50% of memory
under some conditions

October 3, 2013 Log-Structured Memory Slide 4

Non-Copying Allocators

—____________x

35 - W1I@

30 | W2rrra

lexsserrs)
o0 - wa:l
W

15 Live

N\ WY N /
N7 N N\ i

B . AN . \\ 7/, /

1 0 y NG /) y J/ N/ /i
N x N\ X N NN /

WY RS N7 SRR . \\Y

> NN N N 7/

y NN N\ \N77, //,
Wi R] WY v NS v — N\ /

W N N\ \ /

:}f’ x N\, N7/ N\ § 7

WIZREEY% S A W2/RS S N7 /Y
O N\ fAN W ’ 1/,

\glibc 2.12 malloc Hoard 3.9 jemalloc 3.3.0 tcmalloc2.0 memcached

GB Used

<3

Java 1.7

1.4.13 OpendDK

e Blocks cannot be moved once allocated

e Result: fragmentation

Current memory layout:
/= HH = El#

Space needed \l/

Free areas

October 3, 2013 Log-Structured Memory Slide 5

Copying Allocators

GB Used

E=I=3rgr
P !_71
IJ
1

WY A
.- o
VAN
77 WY
"]=ee B — S
I/
N\
———————— = L
u N N
________ W/ .. W o eemeeaae]
i N L\

glibc 21 2 malloc Hoard 3.9 jemal.lo.c 3.3.0 tcmélloc 2.0 merhcached JaVa 1.7 Eloehm GC 7.2d
1.4.13 \OpenJDK
Allocators -

e Garbage collector moves objects, coalesces free space

Before collection: Y [B e
After collection: A W %

e EXpensive, scales poorly:
= Must scan all memory to find and update pointers
= Only collect when there is lots of free space

e State of the art: 3-5x overallocation of memory
e Long pauses: 3+ seconds for full GC

Slide 6

Storage System Goals

e Use memory efficiently even with workload changes
(80-90% utilization)

e Must use a copying approach

e Must be able to collect free space incrementally:
= Pick areas with most free space
= Avoid long pauses

e Key advantage: restricted use of pointers
= Pointers stored in index structures
= Easy to locate pointers for a given memory block

October 3, 2013 Log-Structured Memory Slide 7

Log-Structured Storage

Master Server

Hash Table
Log head:
{table id, add next
object key} object here

Al YT

7
8 MBm;.-.-.':.‘.'.'.'::::‘.‘.“‘......--:::::::::::::‘.:‘.‘.‘.‘.‘
Segments

| B17 Il B86 Il B22 I | B3 Il B72 Il B66 I | I B3 B16
= =

Each segment replicated on disks of 3 backup servers

October 3, 2013 Log-Structured Memory Slide 8

Log Cleaning

e Pick segments with lots of free space

llllllllllllllllllllllllll

llllllllllllllllllllllllll

42551 = - W | 777 DN B:Z
R pe—
e Copy live objects (survivors) into new segment(s)
= H | [[ZZ Y H §H [MPA4 A
N E;_-}E:IA K ==l — l
e Free cleaned segments (use for new objects)
| ZzZ 1 BE| vV A
NE[- edlilE B i =1l
Cleaning is incremental

Cleaning Cost

e Cleaning cost increases with memory utilization
= U: fraction of bytes still live in cleaned segments

Bytes copied by cleaner U 0.5 0.8 0.9 0.99
Bytes freed 1-U 0.5 0.2 0.1 0.01
Bytes copied/byte freed U/(1-U) 1.0 4.0 9.0 99.0

e Conflict between disk and memory

= |nitial RAMCloud implementation: clean disk and memory
together

= Better to run disk at low utilization to reduce cleaning costs
= But, this would mean low utilization of DRAM too

October 3, 2013 Log-Structured Memory Slide 10

Two-Level Cleaning

DRAM [] | ZZHINEE (N B
Disk [MZZ0:E IN\BZ
Compaction:
= Clean single segment in memory
{ } = Free unused memory space
= No change to disk log
DRAM = w21 E S INZE
Disk 2] | ZZHIEE (N F
Combined Cleaning:
= Clean multiple segments
U = \Write new survivor segments (disk & memory)
= Free old segments (disk & memory)
DRAM EN = 2=\
Disk ZZHE =:N\\Zh

October 3, 2013 Log-Structured Memory Slide 11

Two-Level Cleaning, cont’d

e Best of both worlds:

= Optimize utilization of memory
(can afford high bandwidth cost for compaction)

= Optimize disk bandwidth
(can afford extra disk space to reduce cleaning cost)

October 3, 2013 Log-Structured Memory Slide 12

Parallel Cleaning

e Cleaner runs concurrently
with normal requests

]

e Logis immutable
(no updates in place)

e Survivor data written to

_

g

—Log Head

side log . m ggg\%veonrts
= No competition for log head .
e Synchronization points: SENENEN

= Updates to hash table . S Log Head
(cleaner moves object while
being read/written) N

= Adding survivor segments to
log =N\ PEE\ L F

= Freeing cleaned segments
(wait for active requests to
complete)

October 3, 2013 Log-Structured Memory

Log Head —/

Slide 13

Client Write Throughput

60 I I I [I
o - 100B Objects-| 600 = Memory Performance
50 = I SEEr e T . S - ;i .
e A egeen] 900 © Utilization Degradation
" 40 - Twodlevel (Zipfian) =--x--2 P LR 400 T
—_— =] - | TRY [ETH N S
G o0 M T o 200 @ 80% Lr=27%
20 = 200 "(?'E 90% 26'49%
10 “)
|l » cellie:mummsmsm o el s e - 100 O
0 | | | | | | | 0
250 Wiz *“z,‘KBOb‘e"‘S 250 S
200 B 00 2 . .
9 o e = 80% 14-15%
o
= @ 90% 30-42%
100 < 100 5
ko)
50 e 50 9
ou 0
300 '10KB Objects =
| B e :- -------- A ISR, TETPTTIPIN 30 8
250 |- - = 125 @
500 sl el - PS— i —
» eIy 20 X
w
100 110 3 90% 3-6%
50 15 'g
0 | | | | | | | 0
October 3, 2013 30 40 50 60 70 80 90 Slide 14

Memory Utilization (%)

1-Level vs. 2-Level Cleaning

One-Level
Cleaning

October 3, 2013

60
H ;____ | 100B (I)biectsfT 600
s W g a
-' ok T TTET "l».,‘:’_-*- I 500
7% 400
= 300
200
100
0
. g) 250
200 -8 g ~Foed 900
2 150 T o
et gy 150
\; E—— i
190 \\\'\\\ . 100
50 -
0 0
300 0
S 25
@ 3Q 20
= 150 s
100 0
50 .
I ! I I | | J o
30 40 50 60 70 8 90

Memory Utilization (%)

Objects/s (x1,000) Objects/s (x1,000)

Objects/s (x1,000)

Slide 15

Cleaner’s Impact on Latency

100

1OOB overwrltes no Iocallty

No Cleaner

Median:

| * With cleaning: 16.70us

* No cleaner: 16.35pus

99.9%:

"~ ¢ With cleaning: 900us

I— ¢ Nocleaner: 115ps

10 b b TS _Cleaner -------
Lo [IO = S URS UUNS O 0 018 6 S N S N B
.3 [
8 o 0.1
— O L
o= i
S o 0.01 E
5 E 3
= i
85 0.001
29
?_(f, 0.0001 E
(@] L
o c
X s :
= 16-05 ¢
16-06 |
{e-07 L RN E T T
10 100 1000 10000

October 3, 2013

Microseconds (Log Scale)

Log-Structured Memory

Slide 16

Conclusion

e Logging approach to storage allocation works well if
pointers are restricted
= Allows 80-90% memory utilization
= Good performance independent of workload
= Supports concurrent cleaning: no pauses

e Works particularly well in RAMCloud
= Manage both disk and DRAM with same mechanism

e Also makes sense for other DRAM-based storage
systems (see paper for details)

October 3, 2013 Log-Structured Memory Slide 17

October 3, 2013

MB/s

MB/s

MB/s

60
50

40 -

30
20
10

250
200
150
100

50

300
250

200 |

150
100
50
0

Client Throughput

; ______ | "100B (I)biects[T
= T o e .
........ ™ h‘:-" """'--..,_ .
Two-level (Zipfian) sespesa i - ¥
Two-level (Uniform) #-- .- '
- Sequential -m-- —
o
[ovores sl e » rellie: sl —----m--l-a———---;
R ——_"T Y
s RN P
----- “f.
o
[o g T L i S T i I D @ S O D O TSI
I '10KB Objects
ﬂ-'-'.'ll-'.“"l- -------- :- -------- s-__;._-_-.._'l'.’_'_':'..'.'.'.‘;zl
Bl am e B - S— -]
il
30 40 50 60 70 80 90

Memory Utilization (%)

600
500
400
300
200
100
0

Objects/s (x1,000)

250
200
150
100

Objects/s (x1,000)

[«
o

N N
o O

o o
Objects/s (x1,000)

o O

80%:
90%:

80%:
90%:

80%:
90%:

17-27% degradation
26-49% degradation

14-15% degradation
30-42% degradation

3-4% degradation
3-6% degradation

Slide 18

e Server crash? Replay log on other servers to

Tombstones

reconstruct lost data

e Tombstones identify deleted objects:
= Written into log when object deleted or overwritten

= |nfo in tombstone:

Table id

Object key

Version of dead object

|d of segment where object stored

e When can tombstones be deleted?

= After segment containing object has been cleaned

(and replicas deleted on backups)

e Note: tombstones are a mixed blessing

October 3, 2013

Log-Structured Memory

Slide 19

