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Introduction

e Storage allocation: the impossible dream
= Fast allocation/deallocation
= Efficient use of memory
= Handle changing workloads

e RAMCloud: log-structured allocator
= |[ncremental garbage collector for both disk and DRAM

= Two-level approach to cleaning (separate policies for disk and
DRAM)

= Concurrent cleaning

e Results:
= High performance even at 80-90% memory utilization
= No pauses
= Handles changing workloads
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RAMCloud Overview

e Datacenter storage system

e Key-value store

1000 - 100,000 Application Servers

o All datain DRAM at all times 3 (e (2000

= Disk/flash for backup only (Ubrary] (Gbrary] [Liorary)
L

® Large Scale: Datacenter

Coordinator

Network
= 1000-10000 servers e
- _ . Master ﬁ\/lastea ﬁvlasteﬂ
100TB - 10PB capacity bocod bood booed

e Low laten cy: 1000 — 10,000 Storage Servers
= SUS remote access
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Workload Sensitivities
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Allocators

e Allocators waste memory if workloads change:

= E.g., W2 (simulates schema change):
e Allocate 100B objects
e Gradually overwrite with 130B objects

e All existing allocators waste at least 50% of memory
under some conditions
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Non-Copying Allocators
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e Blocks cannot be moved once allocated

e Result: fragmentation

Current memory layout:
/= HH = El#

Space needed \l/

Free areas
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Copying Allocators
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Allocators -

e Garbage collector moves objects, coalesces free space

Before collection: Y [ B e
After collection: A W %

e EXpensive, scales poorly:
= Must scan all memory to find and update pointers
= Only collect when there is lots of free space

e State of the art: 3-5x overallocation of memory
e Long pauses: 3+ seconds for full GC
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Storage System Goals

e Use memory efficiently even with workload changes
(80-90% utilization)

e Must use a copying approach

e Must be able to collect free space incrementally:
= Pick areas with most free space
= Avoid long pauses

e Key advantage: restricted use of pointers
= Pointers stored in index structures
= Easy to locate pointers for a given memory block
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Log-Structured Storage

Master Server

Hash Table
Log head:
{table id, add next
object key} object here
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Each segment replicated on disks of 3 backup servers
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Log Cleaning

e Pick segments with lots of free space
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e Copy live objects (survivors) into new segment(s)
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e Free cleaned segments (use for new objects)
| ZzZ 1 BE| vV A
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Cleaning is incremental



Cleaning Cost

e Cleaning cost increases with memory utilization
= U: fraction of bytes still live in cleaned segments

Bytes copied by cleaner U 0.5 0.8 0.9 0.99
Bytes freed 1-U 0.5 0.2 0.1 0.01
Bytes copied/byte freed U/(1-U) 1.0 4.0 9.0 99.0

e Conflict between disk and memory

= |nitial RAMCloud implementation: clean disk and memory
together

= Better to run disk at low utilization to reduce cleaning costs
= But, this would mean low utilization of DRAM too
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Two-Level Cleaning

DRAM [ ] | ZZHINEE (N B
Disk [ MZZ0:E IN\BZ
Compaction:
= Clean single segment in memory
{ } = Free unused memory space
= No change to disk log
DRAM = w21 E S INZE
Disk 2 ] | ZZHIEE (N F
Combined Cleaning:
= Clean multiple segments
U = \Write new survivor segments (disk & memory)
= Free old segments (disk & memory)
DRAM EN = 2=\
Disk ZZHE =:N\\Zh
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Two-Level Cleaning, cont’d

e Best of both worlds:

= Optimize utilization of memory
(can afford high bandwidth cost for compaction)

= Optimize disk bandwidth
(can afford extra disk space to reduce cleaning cost)
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Parallel Cleaning

e Cleaner runs concurrently
with normal requests

]

e Logis immutable
(no updates in place)

e Survivor data written to

_

g

—Log Head

side log . m ggg\%veonrts
= No competition for log head .
e Synchronization points: SENENEN

= Updates to hash table . S Log Head
(cleaner moves object while
being read/written) N

= Adding survivor segments to
log =N\ PEE\ L F

= Freeing cleaned segments
(wait for active requests to
complete)
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Client Write Throughput
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1-Level vs. 2-Level Cleaning

One-Level
Cleaning
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Cleaner’s Impact on Latency
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Conclusion

e Logging approach to storage allocation works well if
pointers are restricted
= Allows 80-90% memory utilization
= Good performance independent of workload
= Supports concurrent cleaning: no pauses

e Works particularly well in RAMCloud
= Manage both disk and DRAM with same mechanism

e Also makes sense for other DRAM-based storage
systems (see paper for details)
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e Server crash? Replay log on other servers to

Tombstones

reconstruct lost data

e Tombstones identify deleted objects:
= Written into log when object deleted or overwritten

= |nfo in tombstone:

Table id

Object key

Version of dead object

|d of segment where object stored

e When can tombstones be deleted?

= After segment containing object has been cleaned

(and replicas deleted on backups)

e Note: tombstones are a mixed blessing
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