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Introduction

e Traditional memory allocators can’t provide all of
= Fast allocation/deallocation
= Handle changing workloads
= Efficient use of memory

e RAMCloud: log-structured allocator

» [ncremental copying garbage collector

= Two-level approach to cleaning (separate policies for disk and
DRAM)

= Concurrent cleaning (no pauses)

e Results:
= High performance even at 80-90% memory utilization
= Handles changing workloads
= Makes sense for any DRAM-based storage system
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RAMCloud Overview

1000 — 100,000 Application Servers

Durable replica
storage for crash
recovery Ss,
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Workload Sensitivities

glibc malloc: 20 GB memory to hold 10 GB data
__ under workload Wa8:

* Allocate many 50-150B objects

* Then delete 90%, write new 5-15KB objects
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glibc 2.12 Hoard 3.9 jemalloc  tcmalloc 2.0 memcached Java 1.7 Boehm GC
malloc 3.3.0 1.4.13 OpendDK 7.2d

Allocators

e 7 memory allocators, 8 workloads
= Total live data constant (10 GB)
= But workload changes (except W1)

e All allocators waste at least 50% of memory in some situations
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Non-Copying Allocators
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e Blocks cannot be moved once allocated

e Result: fragmentation

\l/

Free areas
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Copying Garbage Collectors
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Before collection:

After collection:

e Must scan all memory to update pointers
= EXxpensive, scales poorly
= Wait for lots of free space before running GC

e State of the art: 3-5x overallocation of memory
e Long pauses: 3+ seconds for full GC
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Allocator for RAMCloud

e Requirements:
= Must use copying approach
= Must collect free space incrementally

e Storage system advantage: pointers restricted
= Pointers stored in index structures
= Easy to locate pointers for a given memory block
= Enables incremental copying

e Can achieve overall goals:
= Fast allocation/deallocation
= |nsensitive to workload changes
= 80-90% memory utilization
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Log-Structured Storage

Master Server

Hash Table
Log head:
{table id, add next
object key} object here

NN

Immutable Log

8 MB
Segments
=] =] =] =]

Each segment replicated on disks of 3 backup servers
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Log Cleaning

1. Pick segments with lots of free space:
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3. Free cleaned segments (and backup replicas)

Log —

Cleaning is incremental
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Cleaning Cost

U: fraction of live bytes
In cleaned segments
0.5 0.9 0.99

Bytes copied by cleaner (U)| 0.5 0.9 10.99
Bytes freed (1-U)| 0.5 0.1 |0.01
Bytes copied/byte freed (U/(1-U))| 1.0 9.0 1]199.0

................................................................................................................................................................................................................

Capacity Bandwidth
Memory | expensive [ cheap

Conflicting Needs:

Disk | cheap expensive

Need different policies for cleaning disk and memory

February 18, 2014 Log-Structured Memory Slide 10



Two-Level Cleaning

DRAM
Backups
Compaction:
@ = Clean single segment in memory
= No change to replicas on backups
DRAM
Backups
Combined Cleaning:
v = Clean multiple segments
= Free old segments (disk & memory)
DRAM

Backups
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Two-Level Cleaning, cont’d

e Best of both worlds:

= Optimize utilization of memory
(can afford high bandwidth cost for compaction)

= Optimize disk bandwidth
(can afford extra disk space to reduce cleaning cost)
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Parallel Cleaning

]

e Survivor data written to \ —Log Head
“side log” \}

= No competition for log head

4 .
= Different backups for I Ll Survivor
replicas . . 5 Segments

D

—— Log Head

e Synchronization points: \
= Updates to hash table

= Adding survivor segments N4
to log

= Freeing cleaned segments [ I Il

Log Head —/
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Throughput vs. Memory Utilization

1 master,

3 backups,
1 client,
concurrent
multi-writes
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1-Level vs. 2-Level Cleaning
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Cleaner’s Impact on Latency

1 client, sequential 100B overwrites, no locality, 90% utilization
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Additional Material in Paper

e Tombstones: log entries to mark deleted objects
= Mixed blessing: impact cleaner performance

e Preventing memory deadlock
= Need space to free space

e Fixed segment selection defect in LFS

e Modified memcached to use log-structured memory:
= 15-30% better memory utilization
= 3% higher throughput
= Negligible cleaning cost (5% CPU utilization)

e YCSB benchmarks vs. HyperDex and Redis:

= RAMCIoud better except vs. Redis under write-heavy workloads
with slow RPC.
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Related Work

e Storage allocators and garbage collectors
= Performance limited by lack of control over pointers
= Some slab allocators almost log-like (slab <=> segment)

e Log-structured file systems
= All info in DRAM in RAMCloud (faster, more efficient cleaning)

e Other large-scale storage systems

= |ncreasing use of DRAM:
Bigtable/LevelDB, Redis, memcached, H-Store, ...

= Log-structured mechanisms for distributed replication
= Tombstone-like objects for deletion
= Most use traditional memory allocators

February 18, 2014 Log-Structured Memory Slide 18



Conclusion

e Logging approach is an efficient way to allocate
memory (if pointers are restricted)
= Allows 80-90% memory utilization
= Good performance (no pauses)
= Tolerates workload changes

e Works particularly well in RAMCloud
= Manage both disk and DRAM with same mechanism

e Also makes sense for other DRAM-based storage
systems
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Tombstones

e Server crash? Replay log on other servers to
reconstruct lost data

e Tombstones identify deleted objects:
= Written into log when object deleted or overwritten

= [nfo in tombstone:

Table id

Object key

Version of dead object

e Id of segment where object stored

e When can tombstones be deleted?

= After segment containing object has been cleaned
(and replicas deleted on backups)

e Note: tombstones are a mixed blessing
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