Log-Structured Memory for
DRAM-Based Storage

Stephen Rumble, Ankita Kejriwal, and
John Ousterhout

Stanford University

Introduction

e Traditional memory allocators can’t provide all of
= Fast allocation/deallocation
= Handle changing workloads
= Efficient use of memory

e RAMCloud: log-structured allocator

» [ncremental copying garbage collector

= Two-level approach to cleaning (separate policies for disk and
DRAM)

= Concurrent cleaning (no pauses)

e Results:
= High performance even at 80-90% memory utilization
= Handles changing workloads
= Makes sense for any DRAM-based storage system

February 18, 2014 Log-Structured Memory Slide 2

RAMCloud Overview

1000 — 100,000 Application Servers

Durable replica
storage for crash
recovery Ss,

February 18, 2014

~ ™)
Appl.

~ ™)
Appl.

~ ™)
Appl.

)
Appl.

kLibraryJ

kLibraryJ

kLibraryJ

Datacenter
Network

/)
Master

/)
Master

/)
Master

Library

— -
-

5us RTT for

small RPCs

Master

Backup
—s—

Backup
—s—

Backup Backup
. .

1000 - 10,000 Storage Servers

All data in DRAM at all times

Log-Structured Memory

{ Coordinator]

\
NS

Key-value store
32-256 GB DRAM

Slide 3

Workload Sensitivities

glibc malloc: 20 GB memory to hold 10 GB data
__ under workload Wa8:

* Allocate many 50-150B objects

* Then delete 90%, write new 5-15KB objects

- INBNZN }
et ANV (KBt KRNt A BN A KB e
i —_—
0 I : . W KRR < 55553 """"""""""""
glibc 2.12 Hoard 3.9 jemalloc tcmalloc 2.0 memcached Java 1.7 Boehm GC
malloc 3.3.0 1.4.13 OpendDK 7.2d

Allocators

e 7 memory allocators, 8 workloads
= Total live data constant (10 GB)
= But workload changes (except W1)

e All allocators waste at least 50% of memory in some situations

February 18, 2014 Log-Structured Memory Slide 4

Non-Copying Allocators

gl Ell Il I I IS I I IS DS S S -

SIS S e N

w

o
T

=

N

7
Y /.
\ 7
- \ /
- W7 XA /
W8 === - 77 % /
— P St N\ s /,
m 15 F Live _ N % /7
- N\ % /
[roommmmm e ““"7; ',’ (e W ““"'i f/’, $e% /,
(_Ij 10 N N N\ N % W/
N N\ WY/] A $X R
b - ’[/ S ’,’[S\ AR o7 [N S, /;’ :’ N\, % --- %) - 4 f/ ----------------------
\\Y /S AN W/, X \\\ N 2 N[/
AN/ ’// f[/ . /:-’ .: \\ 7/ . AN Y/
euBRRECECELITICEEEERED - B8 WIS mmnes N 7 WY/ SRR T WA e NN IS TN AT ALK N [W - -
N N W L N7/ K5 \\7Z ’ N/
Lo N7 N\ AN/ < N . N7 RN Zle <R |
v/ / N\ N7/ e WAL I I
A <

0 I glibé 2.12 Hoérd 3.9 jerhalloc tcmélloc 2.0 merﬁ‘cached Javal7 Boehm GC |
malloc 3.3.0 1.4.13 l OpendDK | 7.2d
\ Allocators

Il Il I I I S S - I - __J

e Blocks cannot be moved once allocated

e Result: fragmentation

\l/

Free areas

February 18, 2014 Log-Structured Memory Slide 5

Copying Garbage Collectors

w
o
T
=
N
™~
b
]

m 15 L

5 Lo N N N/ REE ... \7%: NEENZN7 AV FENT-
—— N N7 - ;§§ ,,,,,,, Y/ I §:§
glibc 2.12 Hoard 3.9 jemalloc tcmalloc 2.0 memcached j Java 1.7

malloc 3.3.0 1.4.13 OpendDK 7.2d
Allocators -— e

Before collection:

After collection:

e Must scan all memory to update pointers
= EXxpensive, scales poorly
= Wait for lots of free space before running GC

e State of the art: 3-5x overallocation of memory
e Long pauses: 3+ seconds for full GC

Slide 6

Allocator for RAMCloud

e Requirements:
= Must use copying approach
= Must collect free space incrementally

e Storage system advantage: pointers restricted
= Pointers stored in index structures
= Easy to locate pointers for a given memory block
= Enables incremental copying

e Can achieve overall goals:
= Fast allocation/deallocation
= |nsensitive to workload changes
= 80-90% memory utilization

February 18, 2014 Log-Structured Memory Slide 7

Log-Structured Storage

Master Server

Hash Table
Log head:
{table id, add next
object key} object here

NN

Immutable Log

8 MB
Segments
=] =] =] =]

Each segment replicated on disks of 3 backup servers

February 18, 2014 Log-Structured Memory Slide 8

Log Cleaning

1. Pick segments with lots of free space:

ll

L
llllllllllllllllllllllllllllllllllllll

—-—--—-—------_
-~y
-
-

——————
———————————————
-
~~~~
- -~
-
-

Log

3. Free cleaned segments (and backup replicas)

Log —

Cleaning is incremental

February 18, 2014 Log-Structured Memory Slide 9



Cleaning Cost

U: fraction of live bytes
In cleaned segments
0.5 0.9 0.99

Bytes copied by cleaner (U)| 0.5 0.9 10.99
Bytes freed (1-U)| 0.5 0.1 |0.01
Bytes copied/byte freed (U/(1-U))| 1.0 9.0 1]199.0

................................................................................................................................................................................................................

Capacity Bandwidth
Memory | expensive [ cheap

Conflicting Needs:

Disk | cheap expensive

Need different policies for cleaning disk and memory

February 18, 2014 Log-Structured Memory Slide 10



Two-Level Cleaning

DRAM
Backups
Compaction:
@ = Clean single segment in memory
= No change to replicas on backups
DRAM
Backups
Combined Cleaning:
v = Clean multiple segments
= Free old segments (disk & memory)
DRAM

Backups

February 18, 2014 Log-Structured Memory

Slide 11



Two-Level Cleaning, cont’d

e Best of both worlds:

= Optimize utilization of memory
(can afford high bandwidth cost for compaction)

= Optimize disk bandwidth
(can afford extra disk space to reduce cleaning cost)

February 18, 2014 Log-Structured Memory Slide 12



Parallel Cleaning

]

e Survivor data written to \ —Log Head
“side log” \}

= No competition for log head

4 .
= Different backups for I Ll Survivor
replicas . . 5 Segments

D

—— Log Head

e Synchronization points: \
= Updates to hash table

= Adding survivor segments N4
to log

= Freeing cleaned segments [ I Il

Log Head —/

February 18, 2014 Log-Structured Memory Slide 13



Throughput vs. Memory Utilization

1 master,

3 backups,
1 client,
concurrent
multi-writes

February 18, 2014

60 ‘
50 :'“'"'.t:'.'.‘.'.:.‘.'.':ﬁ'. o

| 100B Cl)bjecte‘.ET

40 - Two-level (Zipfian) w=-x=- e 4
30 r Two-level (Uniform) »==m=-=:

20 4
10 2
O 1 1 1 1 1

MB/s

L T - 1KB Objects |

e !“"‘.:-;-u.

150 ol

MB/s

100 2

50 2

300 [
250 -------------- '— -------- !-’ -------- Ao mmmmmmm- !-‘-‘::'—'-'-'-;‘-.

200 =
150 |
100 s

50 2

MB/s

1 | 1
30 40 50 GQ_ _70 80 90
Memory Utilization (%)

600
500
400
300
200
100
0

250
200
150
100
50

30
25
20
15
10

s Memory  Performance
8 Utilization Degradation
> 80% 17-27%
£  90% 26-49%
2
O
S
8
<  80% 14-15%
£ 90% 30-42%
2
o]
O
S
8
= 80% 3-4%
2 90% 3-6%
%
O

Slide 14



1-Level vs. 2-Level Cleaning

February 18, 2014

MB/s

MB/s

MB/s

60
50
40
30
20
10

0

250
200
150
100

50

300
250
200
150
100

50

H—,w_,-____. 'I_w | 100B Cl)bjects!T
B . W w‘.”‘l'ﬁ'g-, n
e
= Two-level (Zipfian) m=sx==4 T .
One-level (Zipfian) =g \\ R
—  Two-level (Uniform) -----: N : |
L One-level (Uniform) A\ m
N
T T T
-1 KB Objects -|
1“---;-.-.'.';'_!“““

'10KB Objects
i -

—— F— ;- -------- a ________ o, DT
L e — _
"'Jlrunm”" _
\-\ m”“”"‘l :
N /
\..\ e l;
,,,,,,
0 emory Utllization ()

Memory Utilization (%)

600 __
S
500 S
400 T
2]
Z
L
O

30
25/ C
0 =

w
15‘*@
10_5’_3‘

o]
50
0

One-level
Cleaning

Slide 15



Cleaner’s Impact on Latency

1 client, sequential 100B overwrites, no locality, 90% utilization
10 Y

, 'No Cleaner —
10 [kt e Cleaner someee

L R . Medlan
1 ~riq ¢ With cleaning: 16.70ps
oL IERE * No cleaner:  16.35us

0.01 |
NG T » With cleaning: 900ps

0.001 | NH
.i.Li7T— *Nocleaner:  115us

0.0001 F

% of Writes Taking Longer
Than a Given Time (Log Scale)

1e-05 k

10-06 |

BN Iy
i ' P .

18_07' R R R
10 100 1000 10000

Microseconds (Log Scale)

February 18, 2014 Log-Structured Memory Slide 16



Additional Material in Paper

e Tombstones: log entries to mark deleted objects
= Mixed blessing: impact cleaner performance

e Preventing memory deadlock
= Need space to free space

e Fixed segment selection defect in LFS

e Modified memcached to use log-structured memory:
= 15-30% better memory utilization
= 3% higher throughput
= Negligible cleaning cost (5% CPU utilization)

e YCSB benchmarks vs. HyperDex and Redis:

= RAMCIoud better except vs. Redis under write-heavy workloads
with slow RPC.

February 18, 2014 Log-Structured Memory Slide 17



Related Work

e Storage allocators and garbage collectors
= Performance limited by lack of control over pointers
= Some slab allocators almost log-like (slab <=> segment)

e Log-structured file systems
= All info in DRAM in RAMCloud (faster, more efficient cleaning)

e Other large-scale storage systems

= |ncreasing use of DRAM:
Bigtable/LevelDB, Redis, memcached, H-Store, ...

= Log-structured mechanisms for distributed replication
= Tombstone-like objects for deletion
= Most use traditional memory allocators

February 18, 2014 Log-Structured Memory Slide 18



Conclusion

e Logging approach is an efficient way to allocate
memory (if pointers are restricted)
= Allows 80-90% memory utilization
= Good performance (no pauses)
= Tolerates workload changes

e Works particularly well in RAMCloud
= Manage both disk and DRAM with same mechanism

e Also makes sense for other DRAM-based storage
systems

February 18, 2014 Log-Structured Memory Slide 19



Tombstones

e Server crash? Replay log on other servers to
reconstruct lost data

e Tombstones identify deleted objects:
= Written into log when object deleted or overwritten

= [nfo in tombstone:

Table id

Object key

Version of dead object

e Id of segment where object stored

e When can tombstones be deleted?

= After segment containing object has been cleaned
(and replicas deleted on backups)

e Note: tombstones are a mixed blessing

February 18, 2014 Log-Structured Memory Slide 20



