
Log-Structured Memory for
DRAM-Based Storage

Stephen Rumble, Ankita Kejriwal, and

 John Ousterhout

Stanford University

● Traditional memory allocators can’t provide all of

 Fast allocation/deallocation

 Handle changing workloads

 Efficient use of memory

● RAMCloud: log-structured allocator

 Incremental copying garbage collector

 Two-level approach to cleaning (separate policies for disk and

DRAM)

 Concurrent cleaning (no pauses)

● Results:

 High performance even at 80-90% memory utilization

 Handles changing workloads

 Makes sense for any DRAM-based storage system

February 18, 2014 Log-Structured Memory Slide 2

Introduction

February 18, 2014 Log-Structured Memory Slide 3

RAMCloud Overview

Appl.

Library

…

Datacenter

Network Coordinator

1000 – 10,000 Storage Servers

1000 – 100,000 Application Servers

Master

Backup

… Master

Backup

Master

Backup

Master

Backup

Appl.

Library

Appl.

Library

Appl.

Library

Key-value store

32-256 GB DRAM

5µs RTT for

small RPCs

Durable replica

storage for crash

recovery

All data in DRAM at all times

● 7 memory allocators, 8 workloads

 Total live data constant (10 GB)

 But workload changes (except W1)

● All allocators waste at least 50% of memory in some situations

February 18, 2014 Log-Structured Memory Slide 4

Workload Sensitivities

glibc malloc: 20 GB memory to hold 10 GB data

under workload W8:

• Allocate many 50-150B objects

• Then delete 90%, write new 5-15KB objects

February 18, 2014 Log-Structured Memory Slide 5

Non-Copying Allocators

Free areas

● Blocks cannot be moved once allocated

● Result: fragmentation

February 18, 2014 Log-Structured Memory

Copying Garbage Collectors

● Must scan all memory to update pointers

 Expensive, scales poorly

 Wait for lots of free space before running GC

● State of the art: 3-5x overallocation of memory

● Long pauses: 3+ seconds for full GC

Before collection:

After collection:

Slide 6

● Requirements:

 Must use copying approach

 Must collect free space incrementally

● Storage system advantage: pointers restricted

 Pointers stored in index structures

 Easy to locate pointers for a given memory block

 Enables incremental copying

● Can achieve overall goals:

 Fast allocation/deallocation

 Insensitive to workload changes

 80-90% memory utilization

February 18, 2014 Log-Structured Memory Slide 7

Allocator for RAMCloud

February 18, 2014 Log-Structured Memory Slide 8

Log-Structured Storage

Hash Table

{table id,

object key}

Immutable Log

8 MB

Segments

B17 B86 B22 B3 B72 B66 B49 B3 B16

Log head:

add next

object here

Each segment replicated on disks of 3 backup servers

Master Server

1. Pick segments with lots of free space:

2. Copy live objects (survivors):

3. Free cleaned segments (and backup replicas)

Cleaning is incremental

February 18, 2014 Log-Structured Memory Slide 9

Log Cleaning

Log

Log

Log

Need different policies for cleaning disk and memory

February 18, 2014 Log-Structured Memory Slide 10

Cleaning Cost

0.5

0.5

1.0

0.99

0.01

99.0

0.9

0.1

9.0

U: fraction of live bytes

in cleaned segments
0.5 0.99 0.9

Bytes copied by cleaner (U)

Bytes copied/byte freed (U/(1-U))

Bytes freed (1-U)

Disk

Memory

Capacity Bandwidth

cheap

expensive

expensive

cheap
Conflicting Needs:

Two-Level Cleaning

Combined Cleaning:

 Clean multiple segments

 Free old segments (disk & memory)

Compaction:

 Clean single segment in memory

 No change to replicas on backups

February 18, 2014 Log-Structured Memory Slide 11

Backups

DRAM

Backups

DRAM

Backups

DRAM

● Best of both worlds:

 Optimize utilization of memory

(can afford high bandwidth cost for compaction)

 Optimize disk bandwidth

(can afford extra disk space to reduce cleaning cost)

February 18, 2014 Log-Structured Memory Slide 12

Two-Level Cleaning, cont’d

Parallel Cleaning

● Survivor data written to

“side log”

 No competition for log head

 Different backups for

replicas

● Synchronization points:

 Updates to hash table

 Adding survivor segments

to log

 Freeing cleaned segments

February 18, 2014 Log-Structured Memory Slide 13

...

...

Log Head

Log Head

Survivor

Segments

Log Head

...

February 18, 2014 Log-Structured Memory Slide 14

Throughput vs. Memory Utilization

Memory Performance

Utilization Degradation

 80% 17-27%

 90% 26-49%

 80% 14-15%

 90% 30-42%

 80% 3-4%

 90% 3-6%

1 master,

3 backups,

1 client,

concurrent

multi-writes

February 18, 2014 Log-Structured Memory Slide 15

1-Level vs. 2-Level Cleaning

One-level

Cleaning

February 18, 2014 Log-Structured Memory Slide 16

Cleaner’s Impact on Latency

Median:

• With cleaning: 16.70µs

• No cleaner: 16.35µs

99.9th %ile:

• With cleaning: 900µs

• No cleaner: 115µs

1 client, sequential 100B overwrites, no locality, 90% utilization

● Tombstones: log entries to mark deleted objects

 Mixed blessing: impact cleaner performance

● Preventing memory deadlock

 Need space to free space

● Fixed segment selection defect in LFS

● Modified memcached to use log-structured memory:

 15-30% better memory utilization

 3% higher throughput

 Negligible cleaning cost (5% CPU utilization)

● YCSB benchmarks vs. HyperDex and Redis:

 RAMCloud better except vs. Redis under write-heavy workloads

with slow RPC.
February 18, 2014 Log-Structured Memory Slide 17

Additional Material in Paper

● Storage allocators and garbage collectors

 Performance limited by lack of control over pointers

 Some slab allocators almost log-like (slab <=> segment)

● Log-structured file systems

 All info in DRAM in RAMCloud (faster, more efficient cleaning)

● Other large-scale storage systems

 Increasing use of DRAM:

Bigtable/LevelDB, Redis, memcached, H-Store, ...

 Log-structured mechanisms for distributed replication

 Tombstone-like objects for deletion

 Most use traditional memory allocators

February 18, 2014 Log-Structured Memory Slide 18

Related Work

● Logging approach is an efficient way to allocate

memory (if pointers are restricted)

 Allows 80-90% memory utilization

 Good performance (no pauses)

 Tolerates workload changes

● Works particularly well in RAMCloud

 Manage both disk and DRAM with same mechanism

● Also makes sense for other DRAM-based storage

systems

February 18, 2014 Log-Structured Memory Slide 19

Conclusion

● Server crash? Replay log on other servers to

reconstruct lost data

● Tombstones identify deleted objects:

 Written into log when object deleted or overwritten

 Info in tombstone:

● Table id

● Object key

● Version of dead object

● Id of segment where object stored

● When can tombstones be deleted?

 After segment containing object has been cleaned

(and replicas deleted on backups)

● Note: tombstones are a mixed blessing
February 18, 2014 Log-Structured Memory Slide 20

Tombstones

