
NanoLog:	A	Nanosecond	
Scale	Logging	System

Stephen	Yang
John	Ousterhout

February	9th,	2017PlatformLab Review	2017

Overview
• Implemented	a	fast	C++	Logging	System
• 12.5nsmedian	latency	at	60M log	msgs/sec
• 10-100x	faster	than	existing	systems	such	as	Log4j2	and	spdlog
• Maintains	printf-like	semantics

• Shifts	work	out	of	the	runtime	hot-path
• Extraction	of	static	information	at	compile-time
• Compacted	binary	output	at	runtime
• Defers	formatting	to	an	offline	process

• Benefits	and	Costs
• Allows	detailed	logs	in	low	latency	systems
• Comes	at	the	cost	of	1MB	of	RAM	per	thread,	one	core,	and	disk	bandwidth

Why	Fast Logging?
• Cornerstone	of	debugging
• Affords	visibility	application	state
• Helps	in	root	cause	analysis	after	execution

• Problem:	Logging	is	slow
• Application	response	times	are	getting	faster	(microseconds)
• Logging	is	not	(100-1000’s	of	nanoseconds)
• Example:	RAMCloud	response	time=	5µs,	but	log	time=	1µs

What	makes	logging	slow?

• Compute:	Complex	Formatting
• Loggers	need	to	provide	context	(i.e.	file	location,	time,	severity,	etc)
• The	message	above	has	7	arguments	and	takes	850ns	to	compute

• Output	Bandwidth:	Disk	IO
• On	a	250MB/s	disk,	the	129	bytemessage	above	takes	500ns to	output!

1473057128.133777014 src/LogCleaner.cc:826 in TombstoneRatioBalancer
NOTICE: Using tombstone ratio balancer with ratio = 0.400000

Solutions

• Compute:	Raw	Data	Output
• Most	logs	in	production	are	not	consumed	by	humans
• Save	computation	by	deferring	formatting	to	an	offline	process
• Side	benefit:	more	efficient	for	analysis	engines

• IO:	Extracting	Static	Information
• Static	Info	in	message:	file	location,	line	#,	function,	severity,	format	string.
• Replace	with	identifier	and	compact	remaining	dynamic	information

1473057128.133777014 src/LogCleaner.cc:826 in TombstoneRatioBalancer
NOTICE: Using tombstone ratio balancer with ratio = 0.400000

NanoLog	System	Architecture

Compact	
Log

Runtime

Application	Executable

NanoLog	
Runtime

Buff
er
Buff
er

User	
Thread

Buffer

Decompressor
Aggregator

Offline

Human	
Readable	

Log

NanoLog	
Preprocessor

GC
C

Compilation-TimeUser	
Sources
User	

Sources
User	

Sources
Processed

User	Sources

Library	Sources
Decompressor
Aggregator

Application	
Executable

Compile-time	Optimizations

Post-Processed	User	Source	(main.ii)User	Source	(main.cc)

NanoLog	Library	(StaticInfo.cc)

(a)	Extract	static	log	info

(b)	Inject	optimized	
log	code	

Application	
Executable

Decompressor
Executable

compile
compile

Fast	Runtime	Architecture

• Isolate	the	Threads
• Use	per-thread	buffers	to	lower	synchronization
• Don’t	notify	the	background	thread;	let	it	poll	for	data

• Minimize	Output	Cost
• Caller	pushes	data	uncompressed to	save	on	compute
• IO	Thread	needs	to	save	on	both	IO	and	compute	times.

• Use	only	rudimentary	compaction	(deltas	+	smallest	byte	representations)

Runtime

NanoLog	
Background	
Thread

Output	Log	File
[1			bytes	Header]
[1-4	byte	Unique	Id]
[1-8	byte	Time	diff]
[0-4	bytes	size]
[0-n	bytes	arguments]
....

User	Thread Buffer
User	Thread Buffer
User	Thread Buffer

Decompressor/Aggregator

• Offline	process	to	decompress	log
• Recombines	the	static	+	dynamic	data	to	produce	a	human-readable	file

• Future	Work
• Query/Aggregate	in	compacted	format

Compact	Log	File
[1			bytes	Header]
[1-4	byte	Unique	Id]
[1-8	byte	Time	diff]
[0-4	bytes	size]
[0-n	bytes	arguments]
....

Human	Readable	Log	File

2/9/17	12:45:24	[main]:	Hello	World	21

Decompressor/Aggregator

Benchmarks

• System	Setup
• Processor:	Quad-Core	Intel	Xeon	X3470	@	2.93GHz
• Memory:	24GB	DDR3	@	1333Mhz
• Disk:	120GB	Crucial	M4	over	SATAII	(~250MB/s)

• Test	Setup
• 100M	iterations	of	log	messages,	back	to	back
• Log	Message:	“{time}	{severity}:	{56-byte	message}”

• Overall	Results
Zero	Arguments Boost	v1.55 Log4j2 Spdlog NanoLog

Throughput	(Log/s) 0.82M 1.43M 1.50M 60.1M

Average	Latency	(ns) 1110	ns 697ns 668	ns 16.5ns

0.82 1.43 1.5

60.1

0

20

40

60

Th
ro
ug

hp
ut
	

(M
ill
io
ns
	L
og

s/
se
c)

Throughput	vs.	System

BoostLog Log4j2 spdlog NanoLog

Tail	Latencies

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105 106 107 108 109

Fr
ac

tio
n

of
 L

og
s

Latency (ns)

Kernel Interference
Boost

Log4j2
spdlog

NanoLog

Tail	Latency	(+	NanoLog	Compute)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105 106 107 108 109

Fr
ac

tio
n

of
 L

og
s

Latency (ns)

Kernel Interference
Boost

Log4j2
spdlog

NanoLog
NanoLog with 10ns Compute

Increasing	Parameters

60.1 60

37

21
25

13.7

21.6

9.7

17.6

8

14.5

6.41

0

10

20

30

40

50

60

70

Small	Integers	(~1Byte) Large	Integers	(~4bytes)

M
ill
io
ns
	o
f	L
og
	M

es
sa
ge
s/
se
co
nd

Throughput	with	increasing	“%d”	parameters

0	Params 1	Param 2	Params 3	Params 4	Params 5	Params

Limitations/Future	Work

• Better	Compression?
• Is	there	a	better	way	to	compact	the	output,	but	in	a	performant	way?

• Fully	featured	decompressor/aggregator
• Operating	on	the	compact	representation	is	more	efficient.
• Iterating	over	a	compact	log	message	takes	about	100ns	vs.	1.3µs	to	output

• Resource	Utilization
• Currently	the	system	requires	1MB	per	user	thread,	a	full	core	to	compact,	
and	the	full	bandwidth	of	a	SATA	SSD	to	main	low	latency.	How	does	this	
change	with	new	hardware?

NanoLog	System	Summary
• Compile-Time	Preprocessor

• Extract	static	information	from	log	messages	at	compile	time
• File	name,	line	#,	function	name,	etc

• Catalogs	static	info	and	assigns	a	unique	ID	to	each	log	statement
• Code	Injection	to	record	only	an	identifier	+	parameter	arguments

• Runtime	Library
• Producer/Consumer	Log	output
• Simple	compaction	(taking	deltas/compacting	integers)

• Offline	Decompressor/Aggregator
• Recombine	static	information	for	human	consumption	(if	necessary)
• Offline	Search/Grep/Aggregate	in	compressed	format

Questions

