SEDCL/Platform Lab Retreat

John Ousterhout Stanford University

Transition

SEDCL

Platform Lab

- More faculty
- More students
- Existing projects will carry over
- Broader research agenda

Platform Lab Faculty

Sachin Katti

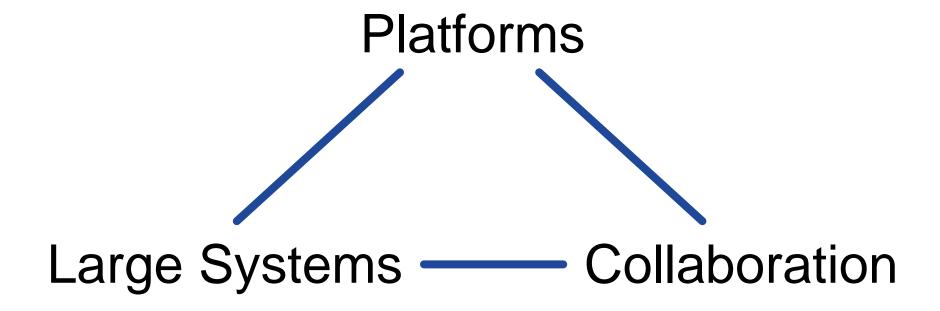
Christos Kozyrakis

Phil Levis

Nick McKeown

John Ousterhout **Faculty Director**

Executive Director


Guru Parulkar Mendel Rosenblum

Keith Winstein

Platform Lab Vision

New platforms enable new applications

What is a Platform?

General-purpose substrate

- Makes it easier to build applications or higher-level platforms
- Solves significant problems
- Usually introduces some restrictions
- Software and/or hardware
- Example: Map/Reduce computational model
 - Simplifies construction of applications that use hundreds of servers to compute on large datasets
 - Hides communication latency: data transferred in large blocks
 - Automatically handles failures & slow servers
 - Restrictions: 2 levels of computation, sequential data access

New Platforms Enable New Applications

• 1980's:

- Platform: relational database
- Applications: enterprise applications

• 1990's:

- Platform: HTTP + HTML + JavaScript
- Applications: online commerce

2000's:

- Platform: GFS + MapReduce
- Applications: large-scale analytics

2010's:

- Platform: smart phones + GPS
- Applications: Uber and many others

"Seed Platforms" for the Platform Lab

Software-defined networking:

- Separates network control and data planes
- Makes it easier to build novel control/management applications

RAMCloud:

- High-speed key-value store for datacenters
- All data in DRAM for low-latency access
- Makes it easier to build applications using DRAM-based storage

Large Systems

Most universities can't do large systems projects

- Fragmented funding model
- Promotions determined by paper counts, not impact
- Result: short-term outlook

Why universities should do large systems projects:

- Companies don't have time to evaluate, find best approach
- Universities can lead the market
- Produce better graduates

Goal for Platform Lab:

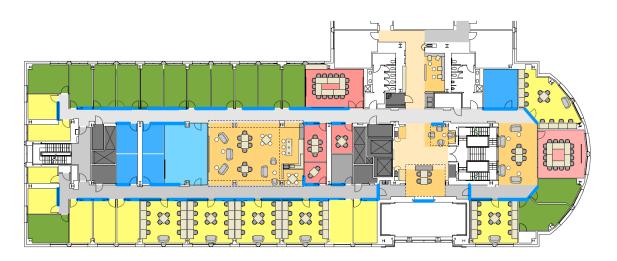
Create environment where large systems projects flourish

Collaboration

Forces against collaboration:

- Faculty overcommitment
- Diversity of interests
- Physical space

Best way to generate collaboration:


- Shared research goals
- Large projects require collaboration

Other ways to stimulate collaboration

- Events: seminars, reading groups, group lunches, etc.
- Physical space

Collaboration, cont'd

- Can physical space help?
- Planning major renovation of Gates 3A:
 - Nothing but glass from window to window
 - Sight lines between researchers
 - Open space for casual conversation

Faculty Retreat, April 3-4

Attendees

- Platform Lab faculty (9)
- Non-lab faculty
 - Mark Horowitz
 - Chris Re
- Friends from industry:
 - Keith Adams (Facebook)
 - Mahesh Balakrishnan (VMware)
 - Jeff Dean (Google)

Goals

- Brainstorm possible research topics
- Discuss lab organization: how to maximize collaboration

Fundamental Challenges

- Achieve physical limits
- Heterogeneity and specialization
 - General-purpose systems fundamentally inefficient
- Scalability and elasticity
- Raise the floor for developer productivity

Research Areas to Explore

- Programmable network fabrics (Katti, Levis, McKeown, Ousterhout, Parulkar)
- Low-latency datacenter (Dally, Katti, Kozyrakis, Levis, Ousterhout)
- Infrastructure for scalable control planes (Katti, Ousterhout, Parulkar)
- New memory/storage systems for the 21st Century (Dally, Kozyrakis, Levis)

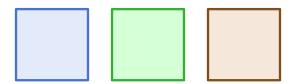
Agenda for this Retreat

- Future-looking faculty talks
- Break-out sessions for discussing research topics
- Student talks
- Long break for outdoor activities, informal discussions
- Last session: industrial feedback

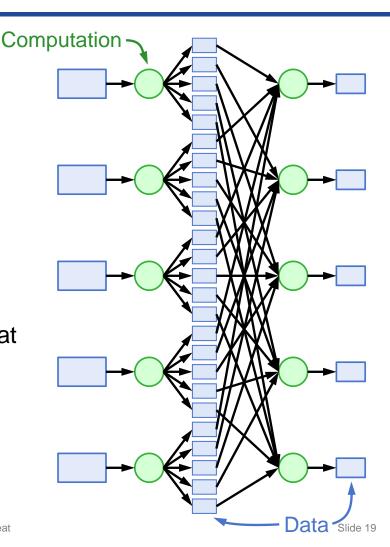
Transition Details for Affiliates

- Lab structure similar to SEDCL
- Existing SEDCL agreements carry over
- All results released open-source
- Two levels of affiliate membership
 - Base level similar to SEDCL Associate
 - New premium level for companies interested in higher level of engagement

Thanks to our Affiliate Sponsors!



Extra Slides


Palette

What is a Platform?

General-purpose substrate

- Makes it easier to build applications or higher-level platforms
- Solves significant problems
- Usually introduces some restrictions
- Software and/or hardware
- Example: Map/Reduce computational model
 - Simplifies construction of applications that use ~1000 servers on large datasets
 - Hides communication latency: data transferred in large blocks
 - Automatically handles failures & slow servers

May 28, 2015 Restrictions: 2 levels of computation Lab Retreat