
Core-Aware Scheduling: Balancing Application
Parallelism with Core Availability

Henry Qin
Advisor: John Ousterhout

Febuary 2, 2016

1 / 15



Introduction

Motivation: Inefficient core and thread management
Hard to get high throughput in low latency services
Difficult to match application parallelism to available cores.

Proposal: Core-Aware Scheduling
Thread scheduling moves to user level
Kernel allocates cores to applications

2 / 15



Outline

Motivation
Proposal for Core-Aware Scheduling
Related Work
Current Status
Request for Feedback

3 / 15



A Throughput Problem

RAMCloud write requests must make replication requests to
backup servers, and wait for their return.

RAMCloud uses polling to avoid expensive kernel thread
switches and and kernel bypass to avoid system calls.

When the master runs out of CPU cores it must cease
processing requests.

4 / 15



Master

Backup

Backup

Backup

W
ri
te

 t
o 

Lo
g

Replication Rpc

Core Exhaustion Bottleneck
New write request, no cores to write to local log.

5 / 15



What happens under load?

Backups are slower to respond, since they coexist with masters.

Write requests wait even longer for backups, spinning cores for
even longer.

6 / 15



7 / 15



Match application parallelism to available cores
Application servers can have many threads running such as log cleaners,
worker threads, and failure detection threads.

We want to neither overcommit nor undercommit cores.

Overcommit cores ==> undesirable kernel multiplexing because there are
multiple kernel threads per core

Under commit cores ==> idle cores.

When the log cleaner needs to run, we would like to scale down the number
of worker threads so that we do not exceed available cores.

8 / 15



Core-Aware Scheduling: Kernel Core Allocator

Kernel scheduler class which allocates cores to applications on
request.
In general, kernel never preempts a thread running on the cores
it has allocated to the process.
Allow kernel to safely multiplex latency-sensitive applications
with CPU-bound batch jobs.
Latency-sensitive applications can request only as many cores as
they need, and give up cores when they no longer need it.

9 / 15



Core-Aware Scheduling: Userland Scheduler

Fast context switches enable practical core multiplexing in a
low-latency system.

Manage thread priorities and parallelism level based on
application-specified policies.

User-level scheduler requests dedicated cores from the OS, and
always knows exactly how many cores it has.

10 / 15



Preempted Questions

How will you handle system calls for blocking IO?

Why is thread pinning insufficient?

11 / 15



Related Work
Scheduler Activations inspired this work but it not
sufficiently core-aware because the kernel makes too many
scheduling decisions.

Linux cgroups do not allow support the dedicated allocation
of specific cores.
Cappricio does not support multicore.
Go does not address the core allocation problem; no mechanism
to communicate with kernel for dedicated cores.
Cilk requires user threads to be non-blocking.
OpenMP supports neither core allocation nor explicit
management of thread scheduling.

12 / 15



Related Work
Scheduler Activations inspired this work but it not
sufficiently core-aware because the kernel makes too many
scheduling decisions.
Linux cgroups do not allow support the dedicated allocation
of specific cores.

Cappricio does not support multicore.
Go does not address the core allocation problem; no mechanism
to communicate with kernel for dedicated cores.
Cilk requires user threads to be non-blocking.
OpenMP supports neither core allocation nor explicit
management of thread scheduling.

12 / 15



Related Work
Scheduler Activations inspired this work but it not
sufficiently core-aware because the kernel makes too many
scheduling decisions.
Linux cgroups do not allow support the dedicated allocation
of specific cores.
Cappricio does not support multicore.

Go does not address the core allocation problem; no mechanism
to communicate with kernel for dedicated cores.
Cilk requires user threads to be non-blocking.
OpenMP supports neither core allocation nor explicit
management of thread scheduling.

12 / 15



Related Work
Scheduler Activations inspired this work but it not
sufficiently core-aware because the kernel makes too many
scheduling decisions.
Linux cgroups do not allow support the dedicated allocation
of specific cores.
Cappricio does not support multicore.
Go does not address the core allocation problem; no mechanism
to communicate with kernel for dedicated cores.

Cilk requires user threads to be non-blocking.
OpenMP supports neither core allocation nor explicit
management of thread scheduling.

12 / 15



Related Work
Scheduler Activations inspired this work but it not
sufficiently core-aware because the kernel makes too many
scheduling decisions.
Linux cgroups do not allow support the dedicated allocation
of specific cores.
Cappricio does not support multicore.
Go does not address the core allocation problem; no mechanism
to communicate with kernel for dedicated cores.
Cilk requires user threads to be non-blocking.

OpenMP supports neither core allocation nor explicit
management of thread scheduling.

12 / 15



Related Work
Scheduler Activations inspired this work but it not
sufficiently core-aware because the kernel makes too many
scheduling decisions.
Linux cgroups do not allow support the dedicated allocation
of specific cores.
Cappricio does not support multicore.
Go does not address the core allocation problem; no mechanism
to communicate with kernel for dedicated cores.
Cilk requires user threads to be non-blocking.
OpenMP supports neither core allocation nor explicit
management of thread scheduling.

12 / 15



Current Status

Implemented a simple user-level dispatcher.

Measured a single direction context switch with no cache
pollution at 9 ns on an Intel(R) Xeon(R) CPU X3470 @ 2.93GHz

13 / 15



Request for Feedback

Do you know of a threading system that solves these problems
of core allocation and fast context switching practically and
cleanly?
Have you ever measured the core utilization over short time
intervals (ms and s) on your large-scale systems?
Do you have dedicated hardware or shared machines?
How do you decide on the number of OS threads for an
application?
What is the relationship between this number and the number
of cores on the machine?

14 / 15



Request for Feedback

Do you know of a threading system that solves these problems
of core allocation and fast context switching practically and
cleanly?

Have you ever measured the core utilization over short time
intervals (ms and s) on your large-scale systems?
Do you have dedicated hardware or shared machines?
How do you decide on the number of OS threads for an
application?
What is the relationship between this number and the number
of cores on the machine?

14 / 15



Request for Feedback

Do you know of a threading system that solves these problems
of core allocation and fast context switching practically and
cleanly?
Have you ever measured the core utilization over short time
intervals (ms and s) on your large-scale systems?

Do you have dedicated hardware or shared machines?
How do you decide on the number of OS threads for an
application?
What is the relationship between this number and the number
of cores on the machine?

14 / 15



Request for Feedback

Do you know of a threading system that solves these problems
of core allocation and fast context switching practically and
cleanly?
Have you ever measured the core utilization over short time
intervals (ms and s) on your large-scale systems?
Do you have dedicated hardware or shared machines?

How do you decide on the number of OS threads for an
application?
What is the relationship between this number and the number
of cores on the machine?

14 / 15



Request for Feedback

Do you know of a threading system that solves these problems
of core allocation and fast context switching practically and
cleanly?
Have you ever measured the core utilization over short time
intervals (ms and s) on your large-scale systems?
Do you have dedicated hardware or shared machines?
How do you decide on the number of OS threads for an
application?

What is the relationship between this number and the number
of cores on the machine?

14 / 15



Request for Feedback

Do you know of a threading system that solves these problems
of core allocation and fast context switching practically and
cleanly?
Have you ever measured the core utilization over short time
intervals (ms and s) on your large-scale systems?
Do you have dedicated hardware or shared machines?
How do you decide on the number of OS threads for an
application?
What is the relationship between this number and the number
of cores on the machine?

14 / 15



Thank You!

If we did not talk at the poster session, please find me
at the reception!

Send mail to hq6@cs.stanford.edu

Questions?

15 / 15


