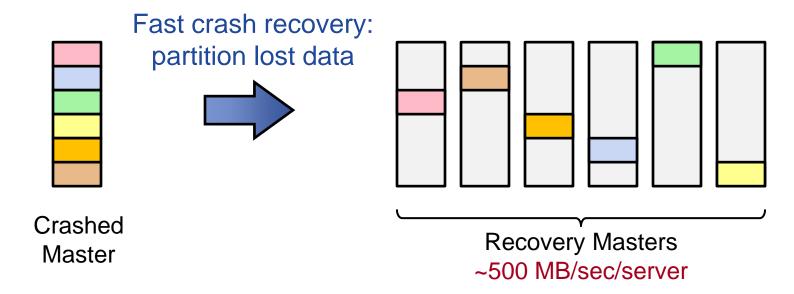
Experiences With RAMCloud Applications

John Ousterhout, Jonathan Ellithorpe, Bob Brown

Overview

January 2014: RAMCloud 1.0 (first practical version)

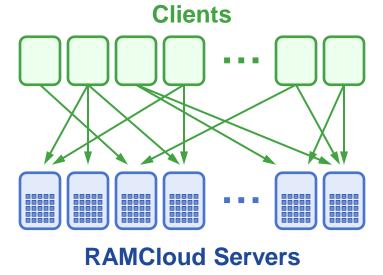

Application experiments so far:

- Stanford: natural language processing, graph algorithms
- Open Networking Laboratory: ONOS (operating system for software defined networks)
- CERN: high energy physics (visiting scientist, summer 2014)
- Huawei: real-time device management

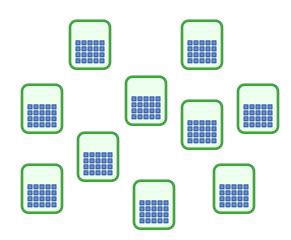
Challenges

- Low-latency networking not yet commonplace
- RAMCloud not cost-effective at small scale
- RAMCloud is too slow (!!)

Scale and Recovery



Cluster Size	Server Capacity	Cluster Capacity	Recovery Time
101 servers	50 GB	5 TB	1 sec
201 servers	100 GB	20 TB	1 sec
6 servers	100 GB	600 GB	40 sec
6 servers	2.5 GB	15 GB	1 sec
11 servers	5 GB	55 GB	1 sec


Small clusters can't have both fast recovery and large capacity/server

Fast But Not Fastest

Choice #1: 5-10 µs remote access

Choice #2: 50-100ns local access

Choice #2 is 100x faster than RAMCloud

- And, can store data in application-specific fashion
- But, data must partition
- What about persistence?

Conclusion

- Technology transfer is a numbers game:
 - Odds of success with any one group or project are low
 - Must try many experiments to find the right fit
- Our goals:
 - Learn something from every test case
 - Keep improving RAMCloud
- Application issues suggest new research opportunities