
What We Have Learned
From RAMCloud (So Far)

John Ousterhout

Stanford University

(with Asaf Cidon, Ankita Kejriwal, Diego Ongaro, Mendel Rosenblum,

Stephen Rumble, Ryan Stutsman, and Stephen Yang)

A collection of broad conclusions we have reached

during the RAMCloud project:

 Randomization plays a fundamental role in large-scale systems

 Need new paradigms for distributed, concurrent, fault-tolerant

software

 Exciting opportunities in low-latency datacenter networking

 Layering conflicts with latency

 Don’t count on locality

 Scale can be your friend

January 24, 2013 What We Have Learned From RAMCloud Slide 2

Introduction

Harness full performance potential of large-scale

DRAM storage:

● General-purpose key-value storage system

● All data always in DRAM (no cache misses)

● Durable and available

● Scale: 1000+ servers, 100+ TB

● Low latency: 5-10µs remote access

Potential impact: enable new class of applications

January 24, 2013 What We Have Learned From RAMCloud Slide 3

RAMCloud Overview

January 24, 2013 What We Have Learned From RAMCloud Slide 4

RAMCloud Architecture

Master

Backup

Master

Backup

Master

Backup

Master

Backup

…

Appl.

Library

Appl.

Library

Appl.

Library

Appl.

Library

…

Datacenter

Network Coordinator

1000 – 10,000 Storage Servers

1000 – 100,000 Application Servers

Commodity

Servers

32-256 GB

per server

High-speed networking:

● 5 µs round-trip

● Full bisection bwidth

Randomization plays a fundamental role in large-scale

systems

● Enables decentralized decision-making

● Example: load balancing of segment replicas. Goals:

 Each master decides where to replicate its own segments: no

central authority

 Distribute each master’s replicas uniformly across cluster

 Uniform usage of secondary storage on backups

January 24, 2013 What We Have Learned From RAMCloud Slide 5

Randomization

M1, S2 M2, S1 M3, S9

M1, S3

M1, S8

M2, S4 M3, S11

M3, S12

M3, S13

M1, S2 M1, S2 M3, S9 M3, S9 M2, S1

M2, S1

M3, S11 M3, S11

M3, S13

M3, S13

M2, S4 M2, S4 M1, S3 M1, S3

M1, S8

M1, S8

M3, S12

M3, S12

Masters

Backups

● Choose backup for each replica at random?

 Uneven distribution: worst-case = 3-5x average

● Use Mitzenmacher’s approach:

 Probe several randomly selected backups

 Choose most attractive

 Result: distribution is nearly uniform

January 24, 2013 What We Have Learned From RAMCloud Slide 6

Randomization, cont’d

● Select 3 backups for segment at random?

● Problem:

 In large-scale system, any 3 machine failures results in data loss

 After power outage, ~1% of servers don’t restart

 Every power outage loses data!

● Solution: derandomize backup selection

 Pick first backup at random (for

load balancing)

 Other backups deterministic

(replication groups)

 Result: data safe for hundreds

of years

 (but, lose more data in each

loss)

January 24, 2013 What We Have Learned From RAMCloud Slide 7

Sometimes Randomization is Bad!

● RAMCloud often requires code that is distributed,

concurrent, and fault tolerant:

 Replicate segment to 3 backups

 Coordinate 100 masters working together to recover failed server

 Concurrently read segments from ~1000 backups, replay log

entries, re-replicate to other backups

● Traditional imperative programming doesn’t work

● No common patterns, each system built from scratch

January 24, 2013 What We Have Learned From RAMCloud Slide 8

DCFT Code is Hard

Must “go back”

after failures

● Emerging pattern in RAMCloud subsystems: rules

● Rule = predicate + action
 Actions short, nonblocking, predictable: no faults within an action

 Rule execution order unpredictable: reflects faults, etc.

● Rules organized into higher-level structures:

tasks, pools

● These ideas are still evolving
January 24, 2013 What We Have Learned From RAMCloud Slide 9

DCFT Code: Need Pattern(s)

if no server assigned for replica

then select backup

if header committed, unreplicated data,

 no RPC outstanding

then start replication RPC

if ...

then ...

Predicate on

state

Action

● Datacenter evolution, phase #1: scale

● Datacenter evolution, phase #2: latency

 Typical round-trip in 2010: 300µs

 Feasible today: 5-10µs

 Ultimate limit: < 2µs

● No fundamental technological obstacles,

but need new architectures:

 Must bypass OS kernel

 New integration of NIC into CPU

 New datacenter network architectures (no buffers!)

 New network/RPC protocols: user-level, scale, latency

(1M clients/server?)

January 24, 2013 What We Have Learned From RAMCloud Slide 10

Low-Latency Networking

Most obvious way to build software: lots of layers

For low latency, must rearchitect with fewer layers

January 24, 2013 What We Have Learned From RAMCloud Slide 11

Layering Conflicts With Latency

Application

Network

Developed

bottom-up

Layers typically “thin”

Problems:

• Complex

• High latency

Application

Network

Harder to design

(top-down and bottom-up)

But, better

architecturally (simpler)

● Greatest drivers for software and hardware systems

over last 30 years:

 Moore’s Law

 Locality (caching, de-dup, rack organization, etc. etc.)

● Large-scale Web applications have huge datasets

but less locality

 Long tail

 Highly interconnected

(social graphs)

January 24, 2013 What We Have Learned From RAMCloud Slide 12

Don’t Count On Locality

F
re

q
u

e
n

c
y

Items

Traditional

applications

Web applications

● Large-scale systems create many problems:

 Manual management doesn’t work

 Reliability is much harder to achieve

 “Rare” corner cases happen frequently

● However, scale can be friend as well as enemy:

 RAMCloud fast crash recovery

● Use 1000’s of servers to recover failed masters quickly

● Since crash recovery is fast, “promote” all errors to server crashes

 Windows error reporting (Microsoft)

● Automated bug reporting

● Statistics identify most important bugs

● Correlations identify buggy device drivers

● Automatic installation of fixes

January 24, 2013 What We Have Learned From RAMCloud Slide 13

Make Scale Your Friend

Build big => learn big

● My pet peeve: too much “summer project research”

 2-3 month projects

 Driven by conference paper deadlines, not technical goals

 Superficial, not much deep learning

● Trying to build a large system that really works is

hard, but intellectually rewarding:

 Exposes interesting side issues

 Important problems identify themselves (recurrences)

 Deeper evaluation (real use cases)

 Shared goal creates teamwork, intellectual exchange

 Overall, deep learning

January 24, 2013 What We Have Learned From RAMCloud Slide 14

Conclusion

