
1

Tablet Profiling
in RAMCloud

Steve Rumble
Stanford University

SEDCL Annual Retreat June 4, 2011

Recall: RAMCloud Data Model

● RAMCloud stores objects in tables
 Tables may span physical machines (if too large, or too hot)
 A contiguous range of a table is called a tablet

● Masters are responsible for serving tablets
 Example:

● Clients obtain a tablet map from the coordinator
 Associates tablets with the master servers that own them

Table # First Key Last Key

12 0 264 - 1

47 63,742 5,723,742

2

Even Distribution for Fast Recovery

● When failures occur, need to recover quickly (1-2 sec)

● Problem:
 Recovery time is dependent on the amount of data each recovery

master recovers

● Can only recover about 600MB in 1-2 seconds
 10GigE: ~1250MB/s max
 600MB in, 1200MB out (R = 2, without multicast)

● Per-object CPU overheads also need to be balanced
3

Dividing Tablets is Tricky

● How does a server evenly divide its tablets / objects?
● Can easily count how many objects and bytes are in

each tablet, but what about big tablets?
 Need to split them. But where to make the cut?

● Must ensure each division isn’t too big
 Cut the key space so each subrange contains <= 600MB of objects

● Difficult because users store variable-sized objects
wherever they want in the 64-bit space
 Densities are unpredictable
 Key density needn’t imply byte density

4

Tablet X’s Key Space

How many objects / megabyte in this range?

264 - 10

Solution 1: Randomness

● Random distribution of keys should yield a uniform
density of bytes
 E.g.: Consistent hashing
 Key used by RAMCloud becomes hash(TableId, ObjectId)

● Equal key subranges should have similar byte counts
 TabletSize / 600MB = number of equal splits to make

● Problems with this idea
 Current design allows implicit locality of data based on locality of

keys (objects in same table and nearby in key space are co-located)
 Locality is useful for multi-object actions like range queries

5

Prefer to Keep Tablet Model

● How can we have our contiguous tablet ranges and
still make recovery fast?

● Need some way to efficiently partition big tablets
 And combine tablets that are small

● Let’s consider a few other options...

6

Solution 2: Batch

● Compute partitions in batch
 Masters periodically scan all of their data and determine reasonable

partitions for their heirs

● Multi-pass algorithm:
 Keep byte counts for N subranges
 Walk log, updating counts
 Split subranges that are too big, merge those that are too small

7

Master Server Log

Tablet Bucket 1 Bucket 2 Bucket 3 ... Bucket N
57 374MB 0 0 ... 0
12 7MB 31MB 17MB ... 45KB

Solution 2: Batch

● After one pass, have byte and object counts for each
bucket of the key space

● Can join small buckets, but must split large ones into
new buckets

● But, when we split, no idea where to draw the line. So,
must break big buckets into another N
 Another pass is needed to update counts

. . .0.5 MB 2 MB 3.4 GB

Join Split 8

Bucket 1 Bucket 2 Bucket N

Solution 2: Batch
● Batch is too expensive

● Need to be able to recalculate partitions fast, since
they can grow at near-network speed (~500MB/s).
 Imbalance => longer recovery
 Cannot afford seconds to recompute

● 64GB’s worth of objects on a single server today
 May be 100s of millions of objects
 And that’s just for one pass (forget multiple passes)

9

Solution 3: Online

● Tablet Profiler
 Profile each tablet to track the space usage
 Do it online (i.e. during writes, while cleaning log)
 Profiler can determine data density with bounded error
 2 operations maintain the data structure:

● Tablet->Profiler->Track(Key, Bytes, Time) -- log writes
● Tablet->Profiler->Untrack(Key, Bytes, Time) -- log cleaning

 Can overlap tablet profile update with data replication
● ~5 microsecond delay to hear back from backups

10

Object Write Write to Log Replicate Data
to backups

Update Tablet Profile

Tablet Profile Structure
● Tree structure - of key ranges and buckets

 Somewhat like a page table structure.
 Parameters:

● B, the number of bits per level (Affects number of buckets)
● S, maximum bytes in a bucket before splitting

● Each level “zooms in” on a subrange of the key
space. Buckets keep byte tallies.

11
Future Issues

Tablet Profiler

Motivation

Tablet Profiling in RAMCloud
Steve Rumble

All RAMCloud objects are associated with a table

 – Large tables are subdivided into contiguous tablets

 – Tablets for a single table may be on multiple servers

Objects are referred to with (TableId, ObjectId) key tuples

Tables and ObjectId ranges imply locality

 – Prefer storing objects in same table together (same machine)

 – Prefer storing objects close in ObjectId space together

A failed server is reconstructed on many recovery servers

 – Necessary to achieve fast recovery

 – Avoids individual disk, network, and CPU bottlenecks

 But fast recovery requires even distribution of recovery load

– 1-2 second recovery budget

– Only time to recover about 600MB per recovery master

 – Full recovery complete when last recovery master is done

Problems:

 – How to evenly divide the load across recovery masters?

 – How to do so while maintaining contiguous tablet ranges?

Consistent hashing is tempting, but...

 – Would like to keep some tablet locality (range queries, etc)

Tables and Tablets

Tablet Data DensityWill

Partition

Not in Partition

Unknown

In Partition

0 2 -164

Bucket Key

TableId ObjectId Range
89
15

105
137

27 to 35
584 to 34,342

2,537 to 2 - 1
0 to 2 - 1

Will computation can be expensive when 1000s of tables

 – Currently compute will by iterating all tablet profiles

 – Need online algorithm

Will synchronization may become a bottleneck

 – Lots of write/cleaning activity could overwhelm coordinator

TableId ObjectId Range
89
15
15
105

27 to 35
584 to 7,374

7,375 to 34,342
2,537 to 2 - 1

PartitionId

0
0
1
1

Tablets on a Master Server

. . .

Will on a Master Server

. . .
Each master server calculates partitions of tablets

 – Each partition is at most 600MB

 – Large tablets are split into several partitions

 – Small tablets are combined into single partitions

Each recovery master is responsible for one of the partitions

 – Servers synchronize their wills with the coordinator

On failure, each recovery server recovers one partition

Masters maintain a tablet profiler for each tablet

 – Dynamically-expanded bucketing structure

 – First level divides whole key space in B buckets

 – When counts in buckets exceed threshold, recurse

Problem:

 – Given a tablet, how can we split the data evenly?

 – Objects of arbitrary size can be anywhere in 64-bit key space

 Need a way to break up tablet key ranges into recoverable units

 – Must not exceed 600MB (network bandwidth limits)

 – Must not be too many objects (per-object recovery CPU cost)

Tablet Key Space0 2 - 1

– How many objects are in this range?
– How many megabytes do they correspond to?

64

64

64

64

Time and Space Complexity

For each object written or cleaned, must update tablet profile

 – Tree walk with depth that's logarithmic in the key space

Worst case space overhead is about 5MB for 64GB server

. . .

256 buckets / level => 8 levels
 8MB treshold / bucket
 7 x 8MB of objects in first 7 levels,

 1B in last level
 Data structure for each level is 4KB
64GB / 56MB * 4KB ~= 5MB

“Subranges”

Tablet Profile Structure

● Example: B = 8, S = 8MB

● With B = 8, there are up to 8 levels
 NumLevels = ceil(64 / B)

L1: . . .

256 buckets in L1,
each covers 1/256th of the 64-bit space

0 264-1

12

Tablet Profile Structure

● Example: B = 8, S = 8MB

● With B = 8, there are up to 8 levels
 NumLevels = ceil(64 / B)

L1: . . .

256 buckets in L1,
each covers 1/256th of the 64-bit space

0 264-1
0 0 0 0

12

Tablet Profile Structure

● Example: B = 8, S = 8MB

● With B = 8, there are up to 8 levels
 NumLevels = ceil(64 / B)

L1: . . .

256 buckets in L1,
each covers 1/256th of the 64-bit space

0 264-1
0 0 08.1 MB

12

Tablet Profile Structure

● Example: B = 8, S = 8MB

● With B = 8, there are up to 8 levels
 NumLevels = ceil(64 / B)

L1: . . .

256 buckets in L1,
each covers 1/256th of the 64-bit space

0 264-1
0 0 08.1 MB

L2: . . . 0 0 00
256 257256 buckets for each subrange in L2,

each covers 1/65536th of the 64-bit space

12

0

Bounding Error
● How does this bound the error?

 Lines are drawn in leaf subranges
 We have exact counts for all data between the border subranges.

13

Future Issues

Tablet Profiler

Motivation

Tablet Profiling in RAMCloud
Steve Rumble

All RAMCloud objects are associated with a table

 – Large tables are subdivided into contiguous tablets

 – Tablets for a single table may be on multiple servers

Objects are referred to with (TableId, ObjectId) key tuples

Tables and ObjectId ranges imply locality

 – Prefer storing objects in same table together (same machine)

 – Prefer storing objects close in ObjectId space together

A failed server is reconstructed on many recovery servers

 – Necessary to achieve fast recovery

 – Avoids individual disk, network, and CPU bottlenecks

 But fast recovery requires even distribution of recovery load

– 1-2 second recovery budget

– Only time to recover about 600MB per recovery master

 – Full recovery complete when last recovery master is done

Problems:

 – How to evenly divide the load across recovery masters?

 – How to do so while maintaining contiguous tablet ranges?

Consistent hashing is tempting, but...

 – Would like to keep some tablet locality (range queries, etc)

Tables and Tablets

Tablet Data DensityWill

Partition

Not in Partition

Unknown

In Partition

0 2 -164

Bucket Key

TableId ObjectId Range
89
15

105
137

27 to 35
584 to 34,342

2,537 to 2 - 1
0 to 2 - 1

Will computation can be expensive when 1000s of tables

 – Currently compute will by iterating all tablet profiles

 – Need online algorithm

Will synchronization may become a bottleneck

 – Lots of write/cleaning activity could overwhelm coordinator

TableId ObjectId Range
89
15
15
105

27 to 35
584 to 7,374

7,375 to 34,342
2,537 to 2 - 1

PartitionId

0
0
1
1

Tablets on a Master Server

. . .

Will on a Master Server

. . .
Each master server calculates partitions of tablets

 – Each partition is at most 600MB

 – Large tablets are split into several partitions

 – Small tablets are combined into single partitions

Each recovery master is responsible for one of the partitions

 – Servers synchronize their wills with the coordinator

On failure, each recovery server recovers one partition

Masters maintain a tablet profiler for each tablet

 – Dynamically-expanded bucketing structure

 – First level divides whole key space in B buckets

 – When counts in buckets exceed threshold, recurse

Problem:

 – Given a tablet, how can we split the data evenly?

 – Objects of arbitrary size can be anywhere in 64-bit key space

 Need a way to break up tablet key ranges into recoverable units

 – Must not exceed 600MB (network bandwidth limits)

 – Must not be too many objects (per-object recovery CPU cost)

Tablet Key Space0 2 - 1

– How many objects are in this range?
– How many megabytes do they correspond to?

64

64

64

64

Time and Space Complexity

For each object written or cleaned, must update tablet profile

 – Tree walk with depth that's logarithmic in the key space

Worst case space overhead is about 5MB for 64GB server

. . .

256 buckets / level => 8 levels
 8MB treshold / bucket
 7 x 8MB of objects in first 7 levels,

 1B in last level
 Data structure for each level is 4KB
64GB / 56MB * 4KB ~= 5MB

Computing Partitions

● Walk each tablet profile
● Once we reach 600MB, we’ve found a partition
● If we don’t reach 600MB, pass the previous count into

the next profile

14

Partition #
0
0
1
2
2

Table First Key Last Key
X 0 264 - 1
Q 0 5,723,742
Q 5,723,742 264 - 50
Q 264 - 49 264 - 1
C 0 264 - 1

Tablet X
Profile

Tablet Q
Profile

Tablet C
Profile

300MB 905MB

0 MB 300 MB 5 MB

50MB

The Last Will and Testament

● While still alive, each server maintains a will
 Groups tablets into even, well-sized chunks (~600MB)

● The will is synchronized with the coordinator
 Needn’t be strictly consistent, so long as it’s complete (describes all

objects owned)

● When a server crashes, the coordinator uses its will
to determine what data each recovery master inherits
 Recovers data according to partitions listed in the will

15

Partition #

0

0

Table # First Key Last Key

12 0 264 - 1

47 63,742 5,723,742

Space Complexity
● Worst case: Lots of small tablets that look like this:

● For 8-level trees, that’s 8 subrange structures for
8MB*7 + 1B ~= 56MB of data
 Each subrange (256 buckets) consumes about 16 * 256 bytes = 4K.

● 16 bytes for object and byte counts
 64GB / 54MB = 1200
 1200 * 4K ~= 4.7MB, or .007% overhead.

...

8 MB

8 MB

8 MB

1 B

16

Time Complexity

● Updates require walking tree structure
 Follow logarithmic number of pointers
 < 1 microsecond
 Subranges can be pooled for quick allocation if we need to expand

● B = 8: 8 levels in the tree
 Currently have plenty of time while waiting for backups to

acknowledge replicated writes

17

Outstanding Issues

● A single object can occupy arbitrary log space and we
can’t split a single key...
 E.g. Update, Update, Update, ...
 Can mitigate by eliding previous objects in same segment

●With 1MB objects and 8192 segments/server, can still have 8GB of old
objects in different segments.

● Wills aren’t yet computed online
 Batch processing too inefficient with 10,000+ tables

18

Questions

19

?

