
1

Tablet Profiling
in RAMCloud

Steve Rumble
Stanford University

SEDCL Annual Retreat June 4, 2011

Recall: RAMCloud Data Model

● RAMCloud stores objects in tables
 Tables may span physical machines (if too large, or too hot)
 A contiguous range of a table is called a tablet

● Masters are responsible for serving tablets
 Example:

● Clients obtain a tablet map from the coordinator
 Associates tablets with the master servers that own them

Table # First Key Last Key

12 0 264 - 1

47 63,742 5,723,742

2

Even Distribution for Fast Recovery

● When failures occur, need to recover quickly (1-2 sec)

● Problem:
 Recovery time is dependent on the amount of data each recovery

master recovers

● Can only recover about 600MB in 1-2 seconds
 10GigE: ~1250MB/s max
 600MB in, 1200MB out (R = 2, without multicast)

● Per-object CPU overheads also need to be balanced
3

Dividing Tablets is Tricky

● How does a server evenly divide its tablets / objects?
● Can easily count how many objects and bytes are in

each tablet, but what about big tablets?
 Need to split them. But where to make the cut?

● Must ensure each division isn’t too big
 Cut the key space so each subrange contains <= 600MB of objects

● Difficult because users store variable-sized objects
wherever they want in the 64-bit space
 Densities are unpredictable
 Key density needn’t imply byte density

4

Tablet X’s Key Space

How many objects / megabyte in this range?

264 - 10

Solution 1: Randomness

● Random distribution of keys should yield a uniform
density of bytes
 E.g.: Consistent hashing
 Key used by RAMCloud becomes hash(TableId, ObjectId)

● Equal key subranges should have similar byte counts
 TabletSize / 600MB = number of equal splits to make

● Problems with this idea
 Current design allows implicit locality of data based on locality of

keys (objects in same table and nearby in key space are co-located)
 Locality is useful for multi-object actions like range queries

5

Prefer to Keep Tablet Model

● How can we have our contiguous tablet ranges and
still make recovery fast?

● Need some way to efficiently partition big tablets
 And combine tablets that are small

● Let’s consider a few other options...

6

Solution 2: Batch

● Compute partitions in batch
 Masters periodically scan all of their data and determine reasonable

partitions for their heirs

● Multi-pass algorithm:
 Keep byte counts for N subranges
 Walk log, updating counts
 Split subranges that are too big, merge those that are too small

7

Master Server Log

Tablet Bucket 1 Bucket 2 Bucket 3 ... Bucket N
57 374MB 0 0 ... 0
12 7MB 31MB 17MB ... 45KB

Solution 2: Batch

● After one pass, have byte and object counts for each
bucket of the key space

● Can join small buckets, but must split large ones into
new buckets

● But, when we split, no idea where to draw the line. So,
must break big buckets into another N
 Another pass is needed to update counts

. . .0.5 MB 2 MB 3.4 GB

Join Split 8

Bucket 1 Bucket 2 Bucket N

Solution 2: Batch
● Batch is too expensive

● Need to be able to recalculate partitions fast, since
they can grow at near-network speed (~500MB/s).
 Imbalance => longer recovery
 Cannot afford seconds to recompute

● 64GB’s worth of objects on a single server today
 May be 100s of millions of objects
 And that’s just for one pass (forget multiple passes)

9

Solution 3: Online

● Tablet Profiler
 Profile each tablet to track the space usage
 Do it online (i.e. during writes, while cleaning log)
 Profiler can determine data density with bounded error
 2 operations maintain the data structure:

● Tablet->Profiler->Track(Key, Bytes, Time) -- log writes
● Tablet->Profiler->Untrack(Key, Bytes, Time) -- log cleaning

 Can overlap tablet profile update with data replication
● ~5 microsecond delay to hear back from backups

10

Object Write Write to Log Replicate Data
to backups

Update Tablet Profile

Tablet Profile Structure
● Tree structure - of key ranges and buckets

 Somewhat like a page table structure.
 Parameters:

● B, the number of bits per level (Affects number of buckets)
● S, maximum bytes in a bucket before splitting

● Each level “zooms in” on a subrange of the key
space. Buckets keep byte tallies.

11
Future Issues

Tablet Profiler

Motivation

Tablet Profiling in RAMCloud
Steve Rumble

All RAMCloud objects are associated with a table

 – Large tables are subdivided into contiguous tablets

 – Tablets for a single table may be on multiple servers

Objects are referred to with (TableId, ObjectId) key tuples

Tables and ObjectId ranges imply locality

 – Prefer storing objects in same table together (same machine)

 – Prefer storing objects close in ObjectId space together

A failed server is reconstructed on many recovery servers

 – Necessary to achieve fast recovery

 – Avoids individual disk, network, and CPU bottlenecks

 But fast recovery requires even distribution of recovery load

– 1-2 second recovery budget

– Only time to recover about 600MB per recovery master

 – Full recovery complete when last recovery master is done

Problems:

 – How to evenly divide the load across recovery masters?

 – How to do so while maintaining contiguous tablet ranges?

Consistent hashing is tempting, but...

 – Would like to keep some tablet locality (range queries, etc)

Tables and Tablets

Tablet Data DensityWill

Partition

Not in Partition

Unknown

In Partition

0 2 -164

Bucket Key

TableId ObjectId Range
89
15

105
137

27 to 35
584 to 34,342

2,537 to 2 - 1
0 to 2 - 1

Will computation can be expensive when 1000s of tables

 – Currently compute will by iterating all tablet profiles

 – Need online algorithm

Will synchronization may become a bottleneck

 – Lots of write/cleaning activity could overwhelm coordinator

TableId ObjectId Range
89
15
15
105

27 to 35
584 to 7,374

7,375 to 34,342
2,537 to 2 - 1

PartitionId

0
0
1
1

Tablets on a Master Server

. . .

Will on a Master Server

. . .
Each master server calculates partitions of tablets

 – Each partition is at most 600MB

 – Large tablets are split into several partitions

 – Small tablets are combined into single partitions

Each recovery master is responsible for one of the partitions

 – Servers synchronize their wills with the coordinator

On failure, each recovery server recovers one partition

Masters maintain a tablet profiler for each tablet

 – Dynamically-expanded bucketing structure

 – First level divides whole key space in B buckets

 – When counts in buckets exceed threshold, recurse

Problem:

 – Given a tablet, how can we split the data evenly?

 – Objects of arbitrary size can be anywhere in 64-bit key space

 Need a way to break up tablet key ranges into recoverable units

 – Must not exceed 600MB (network bandwidth limits)

 – Must not be too many objects (per-object recovery CPU cost)

Tablet Key Space0 2 - 1

– How many objects are in this range?
– How many megabytes do they correspond to?

64

64

64

64

Time and Space Complexity

For each object written or cleaned, must update tablet profile

 – Tree walk with depth that's logarithmic in the key space

Worst case space overhead is about 5MB for 64GB server

. . .

256 buckets / level => 8 levels
 8MB treshold / bucket
 7 x 8MB of objects in first 7 levels,

 1B in last level
 Data structure for each level is 4KB
64GB / 56MB * 4KB ~= 5MB

“Subranges”

Tablet Profile Structure

● Example: B = 8, S = 8MB

● With B = 8, there are up to 8 levels
 NumLevels = ceil(64 / B)

L1: . . .

256 buckets in L1,
each covers 1/256th of the 64-bit space

0 264-1

12

Tablet Profile Structure

● Example: B = 8, S = 8MB

● With B = 8, there are up to 8 levels
 NumLevels = ceil(64 / B)

L1: . . .

256 buckets in L1,
each covers 1/256th of the 64-bit space

0 264-1
0 0 0 0

12

Tablet Profile Structure

● Example: B = 8, S = 8MB

● With B = 8, there are up to 8 levels
 NumLevels = ceil(64 / B)

L1: . . .

256 buckets in L1,
each covers 1/256th of the 64-bit space

0 264-1
0 0 08.1 MB

12

Tablet Profile Structure

● Example: B = 8, S = 8MB

● With B = 8, there are up to 8 levels
 NumLevels = ceil(64 / B)

L1: . . .

256 buckets in L1,
each covers 1/256th of the 64-bit space

0 264-1
0 0 08.1 MB

L2: . . . 0 0 00
256 257256 buckets for each subrange in L2,

each covers 1/65536th of the 64-bit space

12

0

Bounding Error
● How does this bound the error?

 Lines are drawn in leaf subranges
 We have exact counts for all data between the border subranges.

13

Future Issues

Tablet Profiler

Motivation

Tablet Profiling in RAMCloud
Steve Rumble

All RAMCloud objects are associated with a table

 – Large tables are subdivided into contiguous tablets

 – Tablets for a single table may be on multiple servers

Objects are referred to with (TableId, ObjectId) key tuples

Tables and ObjectId ranges imply locality

 – Prefer storing objects in same table together (same machine)

 – Prefer storing objects close in ObjectId space together

A failed server is reconstructed on many recovery servers

 – Necessary to achieve fast recovery

 – Avoids individual disk, network, and CPU bottlenecks

 But fast recovery requires even distribution of recovery load

– 1-2 second recovery budget

– Only time to recover about 600MB per recovery master

 – Full recovery complete when last recovery master is done

Problems:

 – How to evenly divide the load across recovery masters?

 – How to do so while maintaining contiguous tablet ranges?

Consistent hashing is tempting, but...

 – Would like to keep some tablet locality (range queries, etc)

Tables and Tablets

Tablet Data DensityWill

Partition

Not in Partition

Unknown

In Partition

0 2 -164

Bucket Key

TableId ObjectId Range
89
15

105
137

27 to 35
584 to 34,342

2,537 to 2 - 1
0 to 2 - 1

Will computation can be expensive when 1000s of tables

 – Currently compute will by iterating all tablet profiles

 – Need online algorithm

Will synchronization may become a bottleneck

 – Lots of write/cleaning activity could overwhelm coordinator

TableId ObjectId Range
89
15
15
105

27 to 35
584 to 7,374

7,375 to 34,342
2,537 to 2 - 1

PartitionId

0
0
1
1

Tablets on a Master Server

. . .

Will on a Master Server

. . .
Each master server calculates partitions of tablets

 – Each partition is at most 600MB

 – Large tablets are split into several partitions

 – Small tablets are combined into single partitions

Each recovery master is responsible for one of the partitions

 – Servers synchronize their wills with the coordinator

On failure, each recovery server recovers one partition

Masters maintain a tablet profiler for each tablet

 – Dynamically-expanded bucketing structure

 – First level divides whole key space in B buckets

 – When counts in buckets exceed threshold, recurse

Problem:

 – Given a tablet, how can we split the data evenly?

 – Objects of arbitrary size can be anywhere in 64-bit key space

 Need a way to break up tablet key ranges into recoverable units

 – Must not exceed 600MB (network bandwidth limits)

 – Must not be too many objects (per-object recovery CPU cost)

Tablet Key Space0 2 - 1

– How many objects are in this range?
– How many megabytes do they correspond to?

64

64

64

64

Time and Space Complexity

For each object written or cleaned, must update tablet profile

 – Tree walk with depth that's logarithmic in the key space

Worst case space overhead is about 5MB for 64GB server

. . .

256 buckets / level => 8 levels
 8MB treshold / bucket
 7 x 8MB of objects in first 7 levels,

 1B in last level
 Data structure for each level is 4KB
64GB / 56MB * 4KB ~= 5MB

Computing Partitions

● Walk each tablet profile
● Once we reach 600MB, we’ve found a partition
● If we don’t reach 600MB, pass the previous count into

the next profile

14

Partition #
0
0
1
2
2

Table First Key Last Key
X 0 264 - 1
Q 0 5,723,742
Q 5,723,742 264 - 50
Q 264 - 49 264 - 1
C 0 264 - 1

Tablet X
Profile

Tablet Q
Profile

Tablet C
Profile

300MB 905MB

0 MB 300 MB 5 MB

50MB

The Last Will and Testament

● While still alive, each server maintains a will
 Groups tablets into even, well-sized chunks (~600MB)

● The will is synchronized with the coordinator
 Needn’t be strictly consistent, so long as it’s complete (describes all

objects owned)

● When a server crashes, the coordinator uses its will
to determine what data each recovery master inherits
 Recovers data according to partitions listed in the will

15

Partition #

0

0

Table # First Key Last Key

12 0 264 - 1

47 63,742 5,723,742

Space Complexity
● Worst case: Lots of small tablets that look like this:

● For 8-level trees, that’s 8 subrange structures for
8MB*7 + 1B ~= 56MB of data
 Each subrange (256 buckets) consumes about 16 * 256 bytes = 4K.

● 16 bytes for object and byte counts
 64GB / 54MB = 1200
 1200 * 4K ~= 4.7MB, or .007% overhead.

...

8 MB

8 MB

8 MB

1 B

16

Time Complexity

● Updates require walking tree structure
 Follow logarithmic number of pointers
 < 1 microsecond
 Subranges can be pooled for quick allocation if we need to expand

● B = 8: 8 levels in the tree
 Currently have plenty of time while waiting for backups to

acknowledge replicated writes

17

Outstanding Issues

● A single object can occupy arbitrary log space and we
can’t split a single key...
 E.g. Update, Update, Update, ...
 Can mitigate by eliding previous objects in same segment

●With 1MB objects and 8192 segments/server, can still have 8GB of old
objects in different segments.

● Wills aren’t yet computed online
 Batch processing too inefficient with 10,000+ tables

18

Questions

19

?

