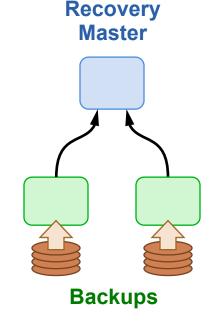
Metrics for RAMCloud Recovery

John Ousterhout Stanford University

Tuesday, February 1, 2011

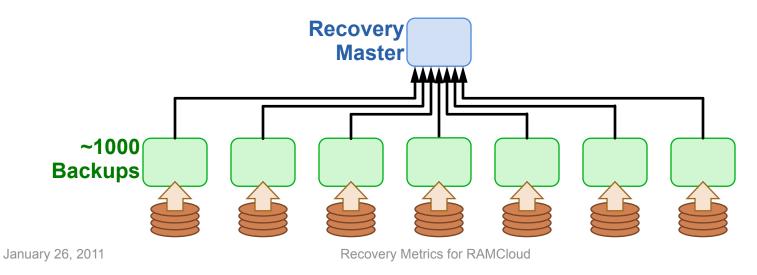

Logging/Recovery Basics

• All data/changes appended to a log:

- One log for each master (kept in DRAM)
- Log data is replicated on disk on 2+ backups
- During recovery:
 - Read data from disks on backups
 - Replay log to recreate data on master
- Recovery must be fast: 1-2 seconds!
 - Only one copy of data in DRAM
 - Data unavailable until recovery completes

Recovery, First Try

- Master chooses backups statically
 - Each backup stores entire log for master
- Crash recovery:
 - Choose recovery master
 - Backups read log info from disk
 - Transfer logs to recovery master
 - Recovery master replays log
- First bottleneck: disk bandwidth:
 - 64 GB / 2 backups / 100 MB/sec/disk
 ≈ 320 seconds
- Solution: more disks (more backups)

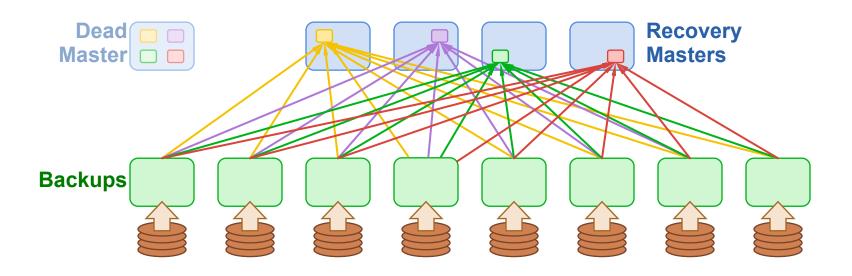


January 26, 2011

3

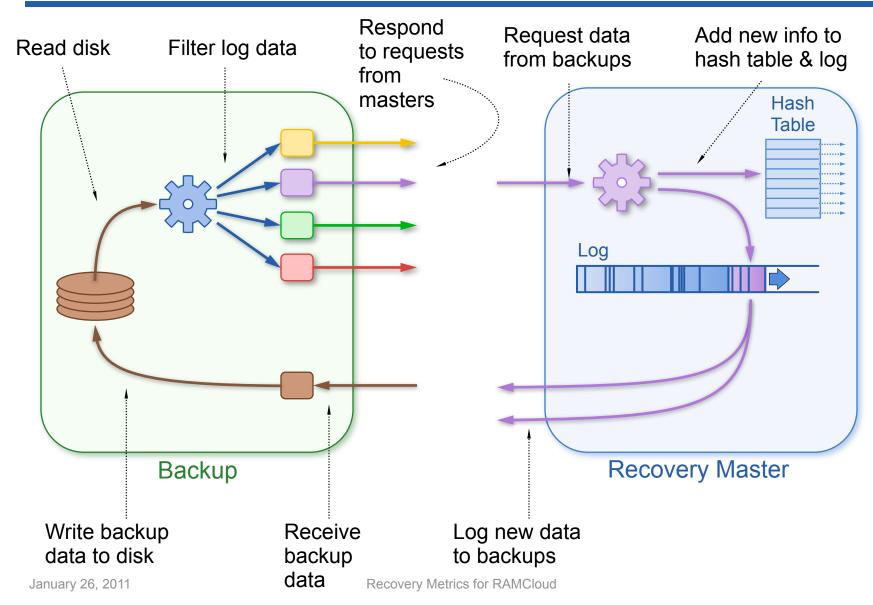
Recovery, Second Try

- Scatter logs:
 - Each log divided into 8MB segments
 - Master chooses different backups for each segment (randomly)
 - Segments scattered across all servers in the cluster
- Crash recovery:
 - All backups read from disk in parallel
 - Transmit data over network to recovery master



Scattered Logs, cont'd

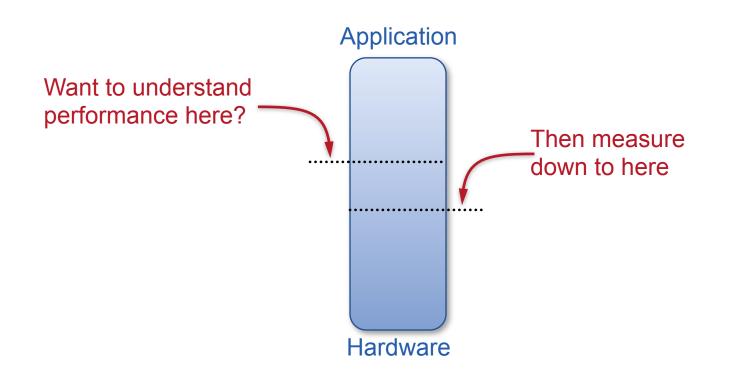
- Disk no longer a bottleneck:
 - 64 GB / 8 MB/segment / 1000 backups ≈ 8 segments/backup
 - 100ms/segment to read from disk
 - 0.8 second to read all segments in parallel
- Second bottleneck: NIC on recovery master
 - 64 GB / 10 Gbits/second ≈ 60 seconds
- Solution: more NICs
 - Spread work over 100 recovery masters
 - 64 GB / 10 Gbits/second / 100 masters ≈ 0.6 second


Recovery, Third Try

- Divide each master's data into partitions
 - Recover each partition on a separate recovery master
 - Partitions based on tables & key ranges, not log segment
 - Each backup divides its log data among recovery masters

January 26, 2011

Parallelism in Recovery



Sample Performance Questions

- How fast is recovery?
- What is the current bottleneck?
- How do we fix it?
- What will the next bottleneck be?
- What is the ultimate limit for performance?
- If the network bandwidth drops, will it hurt recovery performance?
- Someone just made a commit and the behavior/ performance is different; why?

January 26, 2011

Measure Deeper

- Performance measurements often wrong/counterintuitive
- Measure components of performance
- Understand why performance is what it is

January 26, 2011

Utilizations

Where is time being spent? (% of recovery time in each major activity)

• Backup:

- Disk: reading log data, writing new backup data
- CPU: filtering logs
- Network: transmitting logs to recovery masters, receiving new backup data
- Recovery masters:
 - CPU: processing incoming log data
 - Network: receiving log data, writing new backup data

Utilizations, cont'd

- Stalls:
 - Master waiting for incoming log data
 - Master waiting to write new backup data
 - Backup delaying RPC response because segment not yet filtered
 - Disk reads delayed because disk busy writing
 - Can't send RPC because NIC busy
- Break out low-level factors if significant:
 - Memcpy for master copying data into log
 - Memcpy for backup copying filtered segment data

· · · ·

Efficiency

How efficient are individual components/algorithms?

- Backups:
 - Disk read/write bandwidths
 - Network in/out bandwidths
 - RPCs/sec.
 - Filtering: bytes/sec., objects/sec.
- Masters:
 - Network in/out bandwidths
 - RPCs/sec.
 - Efficiency of concurrent RPCs
 - Log processing: bytes/sec., objects/sec.
- Miscellaneous:
 - memcpy bandwidth

Miscellaneous

- Total times:
 - For entire recovery
 - For each master to complete its recovery
- Total data volumes:
 - Read by each backup from disk
 - New data received by each server
 - Total new data written to server log
 - Total new live data after recovery
- Uniformity of filtering: how evenly does segment data divide between servers?
- Unexpected events:
 - Reading secondary copies of segments
 - Crashes of recovery masters/backups

January 26, 2011

Aggregation

- Collect info separately on each master/backup
 - Information applies to a single recovery
 - Write to local log at end of recovery
- Coordinator collects data from each master/backup at the end of recovery
 - Log raw data on coordinator
 - Aggregate to generate overall statistics, such as:
 - Overall utilizations
 - Effective disk bandwidth (read/write) for the entire cluster
 - Effective network bandwidth for entire cluster
 - Avg. disk utilization for backups reading log data
 - Disk bandwidth on individual backups: avg., best, worst, std dev
 - Log aggregate info