
Infrastructure for 
Linearizable RPCs in 
RAMCloud
Seo Jin Park
Stanford University



What is Linearizability and Problem?
• In concurrent programming, an operation (or set of 

operations) is linearizable if it appears to the rest of the 
system to occur instantaneously.

• A RPC in RAMCloud is not linearizable for re-executions 
in certain circumstances (eg. server crash) because the 
same RPC could be executed multiple times.



Broken Conditional Write
Client Master

Tim
eline

foo = <old, 1>

foo = <new, 2>

Lost



Broken Conditional Write 2
Client Master

Tim
eline

foo = <old, 1>

foo = <new, 2>
Crash

Recovery Master

foo = <new, 2>



Solution
• Save the results of RPCs on masters.

• If a master is asked to execute the same RPC 
again, it just returns the old result instead of 
re-executing.



Required Features
Client Master

Foo = 
<old, 1>

Foo = 
<new, 2>Crash

Recovery Master

Foo = 
<new, 2>

• Identify the same re-tried RPCs.

• Save the results of RPCs on 
masters log.

• Fast lookup for the saved results.

• After crash, distribute result log 
entry to correct recovery master.

• On recovery master, reconstruct 
lookup table from log.

• Garbage collection for lookup 
table, client state, and log entries.



Client: provides a unique RPC ID
Client Master

Tim
eline

Coordinator

…

Client ID is 
never repeated.

Seq # is unique 
per client.



How does Master Save Results of RPCs

Seq# 1: Finished

Seq# 3: Finished

Seq# 1: Started

Seq# 3: Finished

Seq# 1: Started

Seq# 3: Finished foo =
<old, 1>

…

Log-structured Memory

Linearizable State Lookup 
Table for Client 5

foo =
<new, 2>

Success …

foo =
<new, 2>

Success …

Master



What happens for re-tries RPCs?

Seq# 1: Finished

Seq# 3: Finished

Seq# 1: Started

Seq# 3: Finished

Seq# 1: Started

Seq# 3: Finished foo =
<old, 1>

…

Log-structured Memory

foo =
<new, 2>

Success …

foo =
<new, 2>

Success …

Master Linearizable State Lookup 
Table for Client 5



Crash Recovery (1): Distribution of Log

Master

Recovery
Master

Recovery
Master

Recovery
Master …

Client 
5

Original 
log

entries

Table ID: 1
Key Hash: f

foo =
<new, 2>

Table ID: 1
Key Hash: f

Success

…

Distribute by
<Table ID, Key Hash>

Crash

foo

Backup



Crash Recovery (2): Reconstruction

Client 
5

Original 
log

entries

Table ID: 1
Key Hash: f

foo =
<new, 2>

Table ID: 1
Key Hash: f

Success
Client ID: 5

Seq #: 1
Ack #: 0

…Seq# 2: Finished

Seq# 4: Finished

Linearizable State Table
for Client 5

Master

Recovery
Master

Recovery
Master

Recovery
Master …

Backup

Crash

Seq# 1: Finished



Garbage Collection 1: Linearizable States
• Client attaches Ack # to every 

linearizable RPC.
(Acknowledging the receipt of all 
results for Seq # <= Ack #)

• Master can clean up all records 
up to highest Ack # seen.

• Client limits the number of 
outstanding RPCs by keeping 
(Seq # – Ack #) < LIMIT, so that 
a master only needs O(LIMIT) 
space per client.

cond_write
(… Ack #: 2)

< LIMIT

Seq# 1: Finished
Seq# 2: Finished
Seq# 3: Finished

…
Seq# 9: Finished

Seq# 10: Finished

Linearizable State
Lookup Table



Garbage Collection 2: Client State
Problem: when is safe to clean up client state on masters? 
(If the client is alive after clean up, master may re-execute 
RPCs.)

• Client maintains lease for its client id and renews it as 
long as it want to keep its linearizable states on masters.

• Coordinator keeps the main lease.

• Master keeps a local lease. On timeout, master asks 
coordinator whether lease is alive.



Garbage Collection 2: Client State

Client Coordinator

Master

cond_w
rite

Lease on client ID
Timeout: expire

Enlist (initialize lease)

client ID

Renew

Ok / failure

Lease
Timeout: check alive

Lease
Timeout: renew



Garbage Collection 3: Log cleaner

… Table ID: 1
Key Hash: f

foo =
<new, 2>

Table ID: 1
Key Hash: f

Success
Client ID: 5

Seq #: 1
Ack #: 0

Table ID: 1
Key Hash: g

Success
Client ID: 5

Seq #: 5
Ack #: 4

…

Seq# 5: Finished

Linearizable State Table for Client 5

(Seq # = 1) 
< 

(Max ACK # = 4)

Discard

Max ACK# for client 5 = 4

(Seq # = 5) 
>

(Max ACK # = 4)

Retain

• Sweep the log-structured 
memory

• Find the maximum of ack# from 
matching client ID.

• Compare with seq# in the log.



What’s done so far?
Features implemented
• Identify the same re-tried RPCs.

• Fast lookup for the saved results.
• 70 nanoseconds overhead for turning on linearizability

• Garbage collection for lookup table.

Future work
• Save the results of RPCs on masters log.

• After crash, distribute result log entry to correct recovery master.

• On recovery master, reconstruct lookup table from log.

• Garbage collection for client state and log entries.



Conclusion
• We build high performance distributed system without 

compromising consistency.

• Durable logging system was key component and made 
design simple.

• The most trickiest part to design correctly was garbage 
collection. (~40% of time)



Q & A



Master
Client Master

Tim
eline

Foo = <new, 
2>

<Client 5, Rpc 1>: started

<Client 5, Rpc 1>: Finished, succeed

<Client 5, Rpc 1> 
= Succeed

Non-durable memory

Durable log commits



Master
Client Master

Tim
eline

Foo = <new, 
2>

<Client 5, Rpc 1>: started

<Client 5, Rpc 1>: Finished, succeed

<Client 5, Rpc 1> 
= Succeed

Non-durable memory

Durable log commits



Master
Client Master

Tim
eline

Foo = <new, 
2>

<Client 5, Rpc 1>: started

<Client 5, Rpc 1>: Finished, succeed

<Client 5, Rpc 1> 
= Succeed

Non-durable memory

Durable log



Structure of Rpc Log Entry
Field Purpose

Result Replying duplicate rpcs in future

<Table ID, Key Hash> Distributing log entries to correct 
recovery masters during recovery

<Client ID, Rpc ID, Ack ID> Reconstructing master’s linearizable 
state during recovery

A Master atomically writes this log entry 
and new object on log.



Distribution of log entry
• During crash recovery, log entries get split to many 

recovery masters.
• After recovery, re-tried RPCs will be directed to new 

recovery masters.
• Every linearizable RPC is tied to an object.
• Linearizable RPC is routed to a master by <Table ID, 

KeyHash>
• By referring <Table ID, KeyHash> value in a log entry, we 

can decide which recovery master is in charge.



Reconstruction of linearizable state
• On crash recovery, a recovery master should incorporate 

old master’s linearizable state, so that it can still avoid re-
execution of linearizable RPCs executed in old master.

• As recovery master receives rpc log entries, it adds new 
entries to its linearizable state by referring 
<Client ID, Rpc ID, Ack ID> and Result.


