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What Is Linearizability and Problem?

- In concurrent programming, an operation (or set of
operations) is linearizable if it appears to the rest of the
system to occur instantaneously.

- A RPC in RAMCloud is not linearizable for re-executions
In certain circumstances (eg. server crash) because the
same RPC could be executed multiple times.
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Solution

- Save the results of RPCs on masters.

- If a master Is asked to execute the same RPC
again, it just returns the old result instead of
re-executing.



Required Features

- ldentify the same re-tried RPCs.

- Save the results of RPCs on
masters log.

- Fast lookup for the saved results.

- After crash, distribute result log
entry to correct recovery master.

- On recovery master, reconstruct
lookup table from log.

- Garbage collection for lookup

table, client state, and log entries.
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Client: provides a unique RPC ID
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How does Master Save Results of RPCs

|\/| aster Linearizablg State Lookup
\ Table for Client 5
Cong .
. A_Writ :
CllentlD_- 5 € Seq# 1 Started Log-structured Memory
5
J: foo . foo =
Ver: 1 Seg# 3: Finished <old, 1>
B
Seqg# 1. Started
Seq# 3: Finished <rfg\f’v e success
<
Seg# 1: Finished ﬁ
— foo = Success
Seq# 3: Finished <new. 2>

(yeeded



L
What happens for re-tries RPCs?
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Crash Recovery (1): Distribution of Log
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Crash Recovery (2): Reconstruction
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Garbage Collection 1: Linearizable States

- Client attaches Ack # to every
linearizable RPC.
(Acknowledging the receipt of all
results for Seq # <= Ack #)

- Master can clean up all records
up to highest Ack # seen.

- Client limits the number of
outstanding RPCs by keeping
(Seq # — Ack #) < LIMIT, so that
a master only needs O(LIMIT)
space per client.
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Garbage Collection 2: Client State

Problem: when is safe to clean up client state on masters?

(If the client is alive after clean up, master may re-execute
RPCs.)

- Client maintains lease for its client id and renews it as
long as it want to keep its linearizable states on masters.

- Coordinator keeps the main lease.

- Master keeps a local lease. On timeout, master asks
coordinator whether lease is alive.



Garbage Collection 2: Client State
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Garbage Collection 3: Log cleaner

Linearizable State Table for Client 5
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What's done so far?

Features implemented
- ldentify the same re-tried RPCs.

- Fast lookup for the saved results.

- 70 nanoseconds overhead for turning on linearizability

- Garbage collection for lookup table.

Future work

- Save the results of RPCs on masters log.

- After crash, distribute result log entry to correct recovery master.
- On recovery master, reconstruct lookup table from log.

- Garbage collection for client state and log entries.



Conclusion

- We build high performance distributed system without
compromising consistency.

- Durable logging system was key component and made
design simple.

- The most trickiest part to design correctly was garbage
collection. (~40% of time)
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Structure of Rpc Log Entry

Result Replying duplicate rpcs in future

<Table ID, Key Hash> Distributing log entries to correct
recovery masters during recovery

<Client ID, Rpc ID, Ack ID> Reconstructing master’s linearizable
state during recovery

A Master atomically writes this log entry
and new object on log.
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Distribution of log entry

- During crash recovery, log entries get split to many
recovery masters.

- After recovery, re-tried RPCs will be directed to new
recovery masters.

- Every linearizable RPC is tied to an object.

- Linearizable RPC is routed to a master by <Table ID,
KeyHash>

- By referring <Table ID, KeyHash> value in a log entry, we
can decide which recovery master is in charge.



Reconstruction of linearizable state

- On crash recovery, a recovery master should incorporate
old master’s linearizable state, so that it can still avoid re-
execution of linearizable RPCs executed in old master.

- As recovery master receives rpc log entries, it adds new
entries to its linearizable state by referring
<Client ID, Rpc ID, Ack ID> and Result.



