Infrastructure for
Linearizable RPCs In
RAMCloud

Seo Jin Park
Stanford University

What Is Linearizability and Problem?

- In concurrent programming, an operation (or set of
operations) is linearizable if it appears to the rest of the
system to occur instantaneously.

- A RPC in RAMCloud is not linearizable for re-executions
In certain circumstances (eg. server crash) because the
same RPC could be executed multiple times.

< aulawiL

Broken Conditional Write

Client - Master

ond_wyrjt
(Obj ©

P o o
O, V@I‘: 1, Val = new)

foo = <old, 1>

foo = <new, 2>

< aulawiL

Broken Conditional Write 2

Master

Client
Cond\Write
(Obj

| = foO’ V _
©r=1, Vgl = new) foo = <old, 1>

foo = <new, 2>

Recovery Master

(Obj = _
J = foo, Ver = .y
> Y4l = neyw) foo = <new, 2>

Solution

- Save the results of RPCs on masters.

- If a master Is asked to execute the same RPC
again, it just returns the old result instead of
re-executing.

Required Features

- ldentify the same re-tried RPCs.

- Save the results of RPCs on
masters log.

- Fast lookup for the saved results.

- After crash, distribute result log
entry to correct recovery master.

- On recovery master, reconstruct
lookup table from log.

- Garbage collection for lookup

table, client state, and log entries.

Client Master
Foo =
co
% <O|d, 1>
Foo =
<new, 2>

Recovery Master

Re-tn,.
W

Foo =

<new, 2>

L
Client: provides a unique RPC ID

Coordinator Client Master

Entist itset
Y
%

Con :
d\Wl’Ite (client ID =5
' S€q # 1)
Cong :
_Write (C”ent D = s

Client ID is Seq #Is unique
never repeated. per client.

< aulawiL

How does Master Save Results of RPCs

|\/| aster Linearizablg State Lookup
\ Table for Client 5
Cong .
. A_Writ :
CllentlD_- 5 € Seq# 1 Started Log-structured Memory
5
J: foo . foo =
Ver: 1 Seg# 3: Finished <old, 1>
B
Seqg# 1. Started
Seq# 3: Finished <rfg\f’v e success
<
Seg# 1: Finished ﬁ
— foo = Success
Seq# 3: Finished <new. 2>

(yeeded

L
What happens for re-tries RPCs?

Master Linearizable State Lookup
Table for Client 5

Seqg# 1: Started

Retry-
“cong v K
Write Seqg# 3: Finished <:;|3§ 1>
{
oy \ate ——

grror: R

Log-structured Memory

Seqg# 1. Started

foo = Success

Seqg# 3: Finished <new, 2>

R B

Seqg# 1: Finished

R try:
. C()nd wri ﬁ
—Write
\ — foo = Success
/ Seq# 3: Finished <new. 2>
ucces®

Crash Recovery (1): Distribution of Log

Crash

Master

eﬂ‘\ﬂ
2
foo

Distribute by
<Table ID, Key Hash>

Original | Table ID: 1
log Key Hash: f
entries foo =
<new, 2>

Crash Recovery (2): Reconstruction

Crash

Master

Recovery Recovery
Master Master

Seqg# 1: Finished
Seq# 2: Finished Original | Table ID: 1
log Key Hash: f
entries foo =
Seqg# 4: Finished <new, 2>

Linearizable State Table
for Client 5

Garbage Collection 1: Linearizable States

- Client attaches Ack # to every
linearizable RPC.
(Acknowledging the receipt of all
results for Seq # <= Ack #)

- Master can clean up all records
up to highest Ack # seen.

- Client limits the number of
outstanding RPCs by keeping
(Seq # — Ack #) < LIMIT, so that
a master only needs O(LIMIT)
space per client.

Linearizable State

Lookup Table
cond_write Seq# 1. Finished?$%
(... Ack #: 2) | seq#2: Finished XX

A | Seg# 3: Finished
<LIMITH Fseq# 9: Finished

Seqg# 10: Finished

v

L
Garbage Collection 2: Client State

Problem: when is safe to clean up client state on masters?

(If the client is alive after clean up, master may re-execute
RPCs.)

- Client maintains lease for its client id and renews it as
long as it want to keep its linearizable states on masters.

- Coordinator keeps the main lease.

- Master keeps a local lease. On timeout, master asks
coordinator whether lease is alive.

Garbage Collection 2: Client State

Enlist (initialize lease)

>

chent ID
Coordinator

Lease on 3
Timeout

Renew
Ok / failure

Le
Timeou

L
Timeout: ¢

Garbage Collection 3: Log cleaner

Linearizable State Table for Client 5

Seqg# 5: Finished \

Table ID: 1 Table ID: 1 Table ID: 1
Key Hash: f Key Hash: f Key Hash: g

foo = Success Success
<new, 2> Client ID: 5 Client ID: 5

i Seq #: 1 Seq #: 5

Max ACK# for client 5=4 Ack #: 0 Ack #: 4

- Sweep the log-structured " (Seq#=1) (Seq#=5))
memaory < >

- Find the maximum of ack# from

matching client ID.

- Compare with seg# in the log.

\

(Max ACK # = 4)

Discard

)

(Max ACK # = 4)

_ Retain

)

What's done so far?

Features implemented
- ldentify the same re-tried RPCs.

- Fast lookup for the saved results.

- 70 nanoseconds overhead for turning on linearizability

- Garbage collection for lookup table.

Future work

- Save the results of RPCs on masters log.

- After crash, distribute result log entry to correct recovery master.
- On recovery master, reconstruct lookup table from log.

- Garbage collection for client state and log entries.

Conclusion

- We build high performance distributed system without
compromising consistency.

- Durable logging system was key component and made
design simple.

- The most trickiest part to design correctly was garbage
collection. (~40% of time)

Q&A

I\/I aSter Non-durable memory | |

Durable log commits

Client Master

O
. O
3

85

>

:

Il =
“s\
25
]

g O

A

=3

o
]

-\

<Client 5, Rpc 1>: started

,
L

Foo = <new, <Client 5, Rpc 1>
2> = Succeed

~

~

<Client 5, Rpc 1>: Finished, succeed
_

~

< aulpwIL

succeeded —

I\/I aster Non-durable memory g

Durable log commits

Client nd Master
ite
Obj = Wi (Clienyp-
J = foo O Versq \'/D 5 Rpeips 4
R ~new)

e~try
<Client 5, Rpc 1>: started

~
4

— (»
3 Retry 1atef
] Foo = <new, <Client 5, Rpc 1>
S5 2> = Succeed
@D
<Client 5, Rpc 1>: Finished, succeed
\ _
Succeeded —
e
—_— Re-try
succeeded —

M aSter Non-durable memory | |

Durable log

Client Master

\ <C|ient 5, RpC 1>: Started d
Retry 1atef

2> = Succeed

<Client 5, Rpc 1>: Finished, succeed

< aulpwIL

gucceeded ==

L
Structure of Rpc Log Entry

Result Replying duplicate rpcs in future

<Table ID, Key Hash> Distributing log entries to correct
recovery masters during recovery

<Client ID, Rpc ID, Ack ID> Reconstructing master’s linearizable
state during recovery

A Master atomically writes this log entry
and new object on log.

L
Distribution of log entry

- During crash recovery, log entries get split to many
recovery masters.

- After recovery, re-tried RPCs will be directed to new
recovery masters.

- Every linearizable RPC is tied to an object.

- Linearizable RPC is routed to a master by <Table ID,
KeyHash>

- By referring <Table ID, KeyHash> value in a log entry, we
can decide which recovery master is in charge.

Reconstruction of linearizable state

- On crash recovery, a recovery master should incorporate
old master’s linearizable state, so that it can still avoid re-
execution of linearizable RPCs executed in old master.

- As recovery master receives rpc log entries, it adds new
entries to its linearizable state by referring
<Client ID, Rpc ID, Ack ID> and Result.

