RAMCloud Overview and Update

SEDCL Forum January, 2015

John Ousterhout Stanford University

Outline

- Quick overview of RAMCloud
- Progress since June retreat
- Current projects:
 - Secondary indexes
 - Multi-object transactions
 - New transport architecture

What is RAMCloud?

General-purpose storage system for large-scale applications:

- All data is stored in DRAM at all times
- As durable and available as disk
- Simple key-value data model
- Large scale: 1000+ servers, 100+ TB
- Low latency: 5-10 µs remote access time

Project goal: enable a new class of data-intensive applications

RAMCloud Architecture

1000 – 100,000 Application Servers

1000 – 10,000 Storage Servers

Data Model: Key-Value Store

Basic operations:

- read(tableId, key)
 => blob, version
- write(tableId, key, blob)
 => version
- delete(tableId, key) (Only overwrite if version matches)

Other operations:

- cwrite(tableId, key, blob, version)
 => version
- Enumerate objects in table
- Efficient multi-read, multi-write
- Atomic increment

Not in RAMCloud 1.0:

- Atomic updates of multiple objects
- Secondary indexes

Tables

Updates

- Raft project (new consensus algorithm) finished:
 - Best Paper Award at USENIX ATC
 - Diego Ongaro graduated in September
 - Usage continues to grow
- Incremental performance improvements:
 - Small random reads: 5.0µs → 4.7µs
 - Small durable writes: 15µs → 13.5µs
- Ongoing experiments with potential applications (more details in upcoming talk)

Secondary Indexes

Participants: Ankita Kejriwal, Stephen Yang

Many interesting issues:

- Representation (objects, indexes)
- Scalability
- Consistency
- Crash recovery

Status in June:

- Skeletal implementation running
- Many restrictions, missing features (e.g. fixed-size keys)

Progress:

- Implemented indexlet split/migrate for reconfiguration
- Reworked B-tree implementation to eliminate restrictions
- Working towards SOSP paper submission

Multi-Object Transactions

- Participants: Collin Lee, Seojin Park, Ankita Kejriwal
- Based on general-purpose linearizability support
 - Discussed at June retreat
 - Completed this fall
- Commit protocol designed:
 - Client-driven (similar to Sinfonia)
 - Capitalizes on linearizability infrastructure
 - Detailed talk coming next
- Implementation underway
- Targeting SOSP paper (March)

Clean-Slate Transport Redesign

- Participants: Behnam Montazeri, Henry Qin, Mohammad Alizadeh
- New network protocol for datacenter RPC:
 - Replace TCP/IP: better latency, scalability
 - Receiver-driven congestion/flow control
 - Design & simulation just getting started
- New threading architecture:
 - Goals:
 - Minimize thread crossings
 - Reduce latency (polling-based)
 - Improve throughput
 - Design work just starting

Conclusion

- Lots of work in progress
- Should have more results by June retreat