Secondary Indexing in RAMCloud

Ankita Kejriwal

Stanford University

(Joint work with Arjun Gopalan, Ashish Gupta and John Ousterhout)

,,ll
1
I

l |
B /
e
7 4
.

l
I

Introduction

e RAMCloud 1.0

e Higher-level data models
= Without sacrificing latency and scalability

e Secondary Indexes: lookups and range
queries on attributes that are not the
primary key

e Feedback welcome!

Januar y 21, 2014 Secondary Indexing in RAMCloud Slide 2

Key Design Issues

e APl and RAMCloud object format
¢ Index placement / partitioning

e Index memory allocation

e Failure / Restoration

e Consistency

Slide

Key Design Issues

e APl and RAMCloud object format
» ¢ Index placement / partitioning

e Index memory allocation

e Failure / Restoration

e Consistency

January 21, 2014 Secondary Indexing in RAMCloud Slide 4

Index Placement

Lookup
on index
4)
Index Key “age”
Table 1
o
p-
Data
Table 1
o

return data

€

January 21, 2014 Secondary Indexing in RAMCloud Slide 5

Index Partitioning

Option 1: Co-locate with data:

Multi lookup

on index

4 "\
Index Key “age”

. Table 1, Part 1

4 N\
Index Key “age”

. Table 1, Part 1

4 N\
Index Key “age”

. Table 1, Part 1

4 N\
Index Key “age”

. Table 1, Part 1

< Nila NG Nita N
Data A Data v Data v Data v
Table 1, Part 1 Table 1, Part 1 Table 1, Part 1 Table 1, Part 1
\ o N N
return datay, v v v
Option 2: Partition based on index key:
Lookup in correct Multi read
index partition l matched data
\
Index Key “age” Index Key “age” Data Data
Table 1 Table 1 Table 1, Part 1 Table 1, Part 2
“age”: <=50 “age”:> 50

January 21, 2014

Secondary Indexing in RAMCloud

¥ return data v

Slide 6

Index Partitioning

e Index lookup:
= Assume data + index on n servers
= Opt 1: multiLookup to n servers + local reads

= Opt 2: lookup to index server + multiRead to x
servers
e X & [0, n-1]
e For small n: expect x = n-1
e For large n: expect x <<n

= Option 2 more scalable

¢ Index entry format:
= <index key, primary key hash>

Januar y 21, 2014 Secondary Indexing in RAMCloud Slide 7

Key Design Issues

e APl and RAMCloud object format
¢ Index placement / partitioning
e Index memory allocation
> o Failure / Restoration
e Consistency

Slide

Failure / Restoration

e Tablet Server
= Doesn’t affect indexes
* “Normal” RAMCloud data recovery

e Index server

= Backup / Recover
= No backup / Rebuild

Januar y 21, 2014 Secondary Indexing in RAMCloud Slide 9

Failure/Restoration: Write Latency

Py = memory write
Index 2 -=== backup write (ultimately disk)
_ -7
Lozl
Index 1 E§===-""" > -7
Data _=222"= S
: ! ' | ' : }—> time
p 10us 20 us 30 us » backup / recover
. E . » N0 backup / rebuild

Latency # Mem writes # Backup writes # Msgs from data to index servers # Msgs to backups

No indexing 15 us 1 R 0 R
Indexing w/ backup/restore 35 us m+1 R*(m+1) m R*(m+1)
Indexing w/ no-backup/rebuild 25 us m+1 R m R

January 21, 2014 Secondary Indexing in RAMCloud Slide 10

Failure/Restoration: Restoration Time

e Recovery: Similar to RAMCloud data recovery: 1-2 s

e Rebuild: Cost analysis:

Setting Index partition to be recovered 1 GB
Size of index entries 50 B (42 for key + 8 for keyhash)
Num of index entries 2 * 1077

Data Max memory bandwidth 35 GB/s

master Memory bw with overheads 20 GB/s
Hash table size (10% of total mem) 25 GB (for 256 GB machine)
Time to scan hash table 1.25s
Time to compare hash info from bucket | negligible
Num objects to check if all match 2.5 * 1079 (for 100B objects)
Cache miss time 0.5 * 1079 cache miss /s
Total cache miss time 5.12s

Network Bandwidth 1 GB/s
Time to transfer over network 1ls

Index Time per object to insert 1.5 us

Recovery Total time to insert 30s

Master Total time to insert with parallelization |1s

Failure/Restoration: Restoration Time

e Recovery: Similar to RAMCloud data recovery: 1-2 s

e Rebuild: Cost analysis:

Setting Index partition to be recovered 1 GB
Size of index entries 50 B (42 for key + 8 for keyhash)
Num of index entries 2 * 1077
Data Max memory bandwidth 35 GB/s
master Memory bw with overheads 20 GB/s
Hash table size (10% of total mem) 25 GB (for 256 GB machine)
Time to scan hash table 1.25s
Time to compare hash info from bucket | negligible
Num objects to check if all match 2.5 * 1079 (for 100B objects)
Cache miss time 0.5 * 1079 cache miss /s
Total cache miss time _
Network Bandwidth 1 GB/s
Time to transfer over network 1ls
Index Time per object to insert 1.5 us
Recovery Total time to insert 30s
Master Total time to insert with parallelization |1s

Failure/Restoration: Restoration Time

e Recovery: Similar to RAMCloud data recovery: 1-2 s

e Rebuild: Cost analysis:

Setting Index partition to be recovered 1 GB
Size of index entries 50 B (42 for key + 8 for keyhash)
Num of index entries 2 * 1077
Data Max memory bandwidth 35 GB/s
master Memory bw with overheads 20 GB/s
Hash table size (10% of total mem) 25 GB (for 256 GB machine)
Time to scan hash table 1.25s
Time to compare hash info from bucket | negligible
Num objects to check if all match 2.5 * 1079 (for 100B gbjects)
Cache miss time (ﬁ * 1079 cache miss /s
Total cache miss time 5125 —
Network Bandwidth 1 GB/s
Time to transfer over network 1ls
Index Time per object to insert 1.5 us
Recovery Total time to insert 30s
Master Total time to insert with parallelization |1s

Memory Benchmark

Random reads from array of 2 * 1028 objects of size 64 B on rcmonster

3 - -+
-------- . .
X +..-' +..-
. Ap_ _A- -4
o _| + - xA
= - PP N =
/A/ _ -~
-7 x 7
D\Uﬂ) L{N) N . A”,/ /',
(O] N K
£ + ,’ -, ’
= .) ,x'
he] (- ’
§ N V R4
o 4 4 foXe)
2 v | NS ~o—
< £
o ; 4 o
S ; /X
< 9 - N ,l./'
A o
+ , . Where x is:
/
X
N — 1
o0 i o —
% o —
§°/ — 16
© =171 1 | | | |
1 4 8 16 24 32

Reading x objects in parallel
rcmonster: 2 x Xeon E5-2670@2.6GHz

January 21, 2014 Secondary Indexing in RAMCloud Slide 14

Key Design Issues

e APl and RAMCloud object format
¢ Index placement / partitioning
e Index memory allocation
e Failure / Restoration
> ¢ Consistency

Januar y 21,2014 Secondary Indexing in RAMCloud Slide 15

Consistency

e At any time, data is consistent with index
entries corresponding to it, if:
» |f data X exists, X is reachable from all key indexes.

= Data returned to client is consistent with key used to
look it up.

e Provides linearizability
= Tradeoff with performance

e Also desirable:
= Dangling pointers are not accumulating.

= Memory footprint will not increase beyond what is
necessary.

January 21, 2014 Secondary Indexing in RAMCloud Slide 16

Consistency

e Simple solution:
= Lock indexes and tablets for the entire duration of
index update — affects scalability and performance
e Our solution: Key ldea:
= Writing object is the commit point

e Interesting situations:
= For multi-threaded write/read, non-locking, no failures
= For multi-threaded write/write, non-locking, no failures
= Failure of an Index Server
= Failure of Master Server

January 21, 2014 Secondary Indexing in RAMCloud Slide 17

Consistency

e Multi-threaded write/read, non-locking, no failures: Object Update

e There exists time x, s.t.: at time < x, client can lookup old data; at
time >= x, it can lookup the new data.

Data { Foo: Bob Brown }
fname Bob, 4444444
Index

lname Brown, 4444444
Index

January 21, 2014 Secondary Indexing in RAMCloud Slide 18

Consistency

e Multi-threaded write/read, non-locking, no failures: Object Update

e There exists time x, s.t.: at time < x, client can lookup old data; at
time >= x, it can lookup the new data.

Step 1

Data L Foo: Bob Brown } L Foo: Bob Brown }
fname | Bob, 4444444 Bob, 4444444
Index | . | Sam, 4444444

Brown, 4444444 E f Brown, 4444444
%ngme .. Smith, 4444444
ndex

January 21, 2014 Secondary Indexing in RAMCloud Slide 19

Consistency

e Multi-threaded write/read, non-locking, no failures: Object Update

e There exists time x, s.t.: at time < x, client can lookup old data; at
time >= x, it can lookup the new data.

Step 1 Step 2

Data L Foo: Bob Brown } L Foo: Bob Brown } L Foo: Sam Smith }
 Bob, 4444444 | = Bob, 4444444 | Bob, 4444444
fname - |
Index | Sam, 4444444 . Sam, 4444444
Iname Brown, 4444444 | | Brown, 4444444 | Brown, 4444444
Ind . Smith, 4444444 | Smith, 4444444
naex | |

January 21, 2014 Secondary Indexing in RAMCloud Slide 20

Consistency

e Multi-threaded write/read, non-locking, no failures: Object Update

e There exists time x, s.t.: at time < x, client can lookup old data; at
time >= x, it can lookup the new data.

Step 1 Step 2 Step 3

Foo: Bob Brown } L Foo: Bob Brown }[Foo: Sam Smith } L Foo: Sam Smith }

fname | Bob, 4444444 | | Bob, 4444444 | Bob, 4444444 | | Sam, 4444444
| | sam, 4444444 | Sam, 4444444

Index | b |
lname Brown, 4444444 | | Brown, 4444444 | Brown, 4444444 | | Smith, 4444444
Ind . Smith, 4444444 . Smith, 4444444 |

naex L

January 21, 2014 Secondary Indexing in RAMCloud Slide 21

Summary

e Secondary Indexes: lookups & range queries
on attributes that are not the primary key

e Key design issues:

= |ndex partitioning
e Co-locate with data
e Partition based on index key

= Failure / Restoration
e Backup / recover
e No backup / rebuild

= Consistency: Linearizability
e Key idea: Writing object is the commit point

e Feedback welcome!

January 21, 2014 Secondary Indexing in RAMCloud Slide 22

Thank you!

