Secondary Indexing in RAMCloud

Ankita Kejriwal

Stanford University

(Joint work with Arjun Gopalan, Ashish Gupta and John Ousterhout)

Introduction

e RAMCloud 1.0

e Higher-level data models
= Without sacrificing latency and scalability

e Secondary Indexes: lookups and range
queries on attributes that are not the
primary key

e Feedback welcome!

Januar y 21, 2014 Secondary Indexing in RAMCloud Slide 2

Key Design Issues

e APl and RAMCloud object format
¢ Index placement / partitioning

e Index memory allocation

e Failure / Restoration

e Consistency

Januar y 21,2014 Secondary Indexing in RAMCloud Slide 3

Key Design Issues

e APl and RAMCloud object format
> ¢ Index placement / partitioning

e Index memory allocation

e Failure / Restoration

e Consistency

Januar y 21,2014 Secondary Indexing in RAMCloud Slide 4

Index Placement

Lookup
on index
4 N
Index Key “age”
L Table 1
4 v
Data
Table 1
o

return data

<€

January 21, 2014 Secondary Indexing in RAMCloud Slide 5

Index Partitioning

Option 1: Co-locate with data: Multi lookup
on index

4 N\
Index Key “age”

. Table 1, Part 1

' N
Data v

Table 1, Part 1

-

4 N\
Index Key “age”

. Table 1, Part 1

' A
Data v

Table 1, Part 1

-

4 N\
Index Key “age”

. Table 1, Part 1

4 A
Data v

Table 1, Part 1

4)
Index Key “age”

. Table 1, Part 1

4 N
Data \

Table 1, Part 1

-

-

return data,

v

Option 2: Partition based on index key:

Lookup in correct

index

partition

| AN

Multi read
matched data

Index Key “age”
Table 1
“age”: <=50

Index Key “age”
Table 1
“age”: >50

Data
Table 1, Part 1

N
Data

Table 1, Part 2

January 21, 2014

Secondary Indexing in RAMCloud

¥ return data v

S|ide 6

Index Partitioning

e Index lookup:
= Assume data + index on n servers
= Opt 1: multiLookup to n servers + local reads

= Opt 2: lookup to index server + multiRead to x
servers
o X C [O, n-1]
e For small n: expect x = n-1
e For large n: expect x << n

= Option 2 more scalable

¢ Index entry format:
= <index key, primary key hash>

Januar y 21, 2014 Secondary Indexing in RAMCloud Slide 7

Key Design Issues

e APl and RAMCloud object format
¢ Index placement / partitioning
e Index memory allocation
> o Failure / Restoration
e Consistency

Januar y 21,2014 Secondary Indexing in RAMCloud Slide 8

Failure / Restoration

e Tablet Server
= Doesn’t affect indexes
= “Normal” RAMCloud data recovery

e Index server
= Backup / Recover

= No backup / Rebuild

Januar y 21,2014 Secondary Indexing in RAMCloud Slide 9

Failure/Restoration: Write Latency

%= = memory write
Index 2 -=== backup write (ultimately disk)
_ -7
- - : — -
Index 1 LR > _eZ
Data _g222=-=
: : : ' l —> time
10 us 20 us 30 us

» backup / recover
» NO backup / rebuild

{k a
v
a

Latency # Mem writes # Backup writes # Msgs from data to index servers # Msgs to backups

No indexing 15 us 1 R 0 R
Indexing w/ backup/restore 35 us m+1 R*(m+1) m R*(m+1)
Indexing w/ no-backup/rebuild 25 us m+1 R m R

January 21, 2014 Secondary Indexing in RAMCloud Slide 10

Failure/Restoration: Restoration Time

e Recovery: Similar to RAMCloud data recovery: 1-2 s

e Rebuild: Cost analysis:

Setting Index partition to be recovered 1 GB
Size of index entries 50 B (42 for key + 8 for keyhash)
Num of index entries 2 *10"7

Data Max memory bandwidth 35 GB/s

master Memory bw with overheads 20 GB/s
Hash table size (10% of total mem) 25 GB (for 256 GB machine)
Time to scan hash table 1.25s
Time to compare hash info from bucket | negligible
Num objects to check if all match 2.5 * 10”9 (for 100B objects)
Cache miss time 0.5 * 1079 cache miss /s
Total cache miss time 5.12s

Network Bandwidth 1 GB/s
Time to transfer over network 1ls

Index Time per object to insert 1.5 us

Recovery Total time to insert 30s

Master Total time to insert with parallelization |1s

Failure/Restoration: Restoration Time

e Recovery: Similar to RAMCloud data recovery: 1-2 s

e Rebuild: Cost analysis:

Setting Index partition to be recovered 1 GB
Size of index entries 50 B (42 for key + 8 for keyhash)
Num of index entries 2 *10"7
Data Max memory bandwidth 35 GB/s
master Memory bw with overheads 20 GB/s
Hash table size (10% of total mem) 25 GB (for 256 GB machine)
Time to scan hash table 1.25s
Time to compare hash info from bucket | negligible
Num objects to check if all match 2.5 * 10”9 (for 100B objects)
Cache miss time 0.5 * 1079 cache miss /s
Total cache miss time _
Network Bandwidth 1 GB/s
Time to transfer over network 1s
Index Time per object to insert 1.5 us
Recovery Total time to insert 30s
Master Total time to insert with parallelization |1s

Failure/Restoration: Restoration Time

e Recovery: Similar to RAMCloud data recovery: 1-2 s

e Rebuild: Cost analysis:

Setting Index partition to be recovered 1 GB
Size of index entries 50 B (42 for key + 8 for keyhash)
Num of index entries 2 *10"7

Data Max memory bandwidth 35 GB/s

master Memory bw with overheads 20 GB/s
Hash table size (10% of total mem) 25 GB (for 256 GB machine)
Time to scan hash table 1.25s

Time to compare hash info from bucket | negligible

Num objects to check if all match 2.5%
Cache miss time (ﬁ* 1079 cache miss /s

Total cache miss time 5175 —
Network Bandwidth 1 GB/s

Time to transfer over network 1ls
Index Time per object to insert 1.5 us
Recovery Total time to insert 30s

Master Total time to insert with parallelization |1s

Aggregate bandwidth in GB/s

January 21, 2014

Random reads from array of 2 * 1078 objects of size 64 B on rcmonster

Te}
(sp}

30

25

20

15

10

Memory Benchmark

_| +.
....... +
L
pa— .'+‘ ’/ .‘x.
Phe . X
- -
/A’ -
- X
P .7
| -~ 2
L 'A/ ,
. 7
.+ /, .7
) X
| 7
/ /

A/ '/' o
+ .,
— i
1, o
A'/
+,x o/
Q‘ 7
_ 00
|1 | | | | |
1 4 8 16 24 32

Reading x objects in parallel
rcmonster: 2 x Xeon E5-2670@2.6GHz

Secondary Indexing in RAMCloud

_ .AA_. -A- - -4

- %= =)

Where x is:
— 1
— 4
— 8
— 16

Slide 14

Key Design Issues

e APl and RAMCloud object format
¢ Index placement / partitioning
e Index memory allocation
e Failure / Restoration
» ¢ Consistency

Januar y 21,2014 Secondary Indexing in RAMCloud Slide 15

Consistency

e At any time, data is consistent with index
entries corresponding to it, if:
= |f data X exists, X is reachable from all key indexes.

= Data returned to client is consistent with key used to
look it up.

e Provides linearizability
= Tradeoff with performance

e Also desirable:

= Dangling pointers are not accumulating.

= Memory footprint will not increase beyond what is
necessary.

January 21, 2014 Secondary Indexing in RAMCloud Slide 16

Consistency

e Simple solution:
= Lock indexes and tablets for the entire duration of
index update — affects scalability and performance
e Our solution: Key Idea:
= Writing object is the commit point

e Interesting situations:
= For multi-threaded write/read, non-locking, no failures
* For multi-threaded write/write, non-locking, no failures
= Failure of an Index Server
= Failure of Master Server

January 21, 2014 Secondary Indexing in RAMCloud Slide 17

Consistency

e Multi-threaded write/read, non-locking, no failures: Object Update

e There exists time x, s.t.: at time < x, client can lookup old data; at
time >= x, it can lookup the new data.

[Foo: Bob Brown }

Data

fname | Bob, 4444444
Index ¢
1name Brown, 4444444
Index

January 21, 2014 Secondary Indexing in RAMCloud Slide 18

Consistency

e Multi-threaded write/read, non-locking, no failures: Object Update

e There exists time x, s.t.: at time < x, client can lookup old data; at
time >= x, it can lookup the new data.

Step 1

[Foo: Bob Brown } [Foo: Bob Brown }

Data

fname Bob, 4444444 Bob, 4444444
| | Sam, 4444444

Index
Brown, 4444444 E ; Brown, 4444444
© : Smith, 4444444

lname
Index

January 21, 2014 Secondary Indexing in RAMCloud Slide 19

Consistency

e Multi-threaded write/read, non-locking, no failures: Object Update

e There exists time x, s.t.: at time < x, client can lookup old data; at
time >= x, it can lookup the new data.

Step 1 Step 2

Foo: Bob Brown Foo: Bob Brown Foo: Sam Smith
Data

fname | Bob, 4444444 | | Bob, 4444444 | Bob, 4444444
5 | sam, 4444444 1 Sam, 4444444

IndeX ...

1name Brown, 4444444 | = Brown, 4444444 | Brown, 4444444

Ind .| Smith, 4444444 | sSmith, 4444444
ndex 1

January 21, 2014 Secondary Indexing in RAMCloud Slide 20

Consistency

e Multi-threaded write/read, non-locking, no failures: Object Update

e There exists time x, s.t.: at time < x, client can lookup old data; at
time >= x, it can lookup the new data.

Step 1 Step 2 Step 3

Data [Foo: Bob Brown } [Foo: Bob Brown }[Foo: Sam Smith } [Foo: Sam Smith }

fname | Bob, 4444444 | | Bob, 4444444 . Bob, 4444444 | | Sam, 4444444
] . 1 Sam, 4444444 | Sam, 4444444 @ |

IndeX ..
1name Brown, 4444444 | = Brown, 4444444 | Brown, 4444444 | | Smith, 4444444
Ind .| Smith, 4444444 | sSmith, 4444444

ndex 1

January 21, 2014 Secondary Indexing in RAMCloud Slide 21

Summary

e Secondary Indexes: lookups & range queries
on attributes that are not the primary key

e Key design issues:

= |ndex partitioning
e Co-locate with data
e Partition based on index key

= Failure / Restoration
e Backup / recover
e No backup / rebuild

= Consistency: Linearizability
e Key idea: Writing object is the commit point

e Feedback welcome!

January 21, 2014 Secondary Indexing in RAMCloud Slide 22

Thank you!

