

In search of an understandable
consensus algorithm

Diego Ongaro and John Ousterhout
Stanford University

SEDCL Forum
January 24, 2013

How did we end up here?

● RAMCloud relies on a single cluster coordinator

– Need to elect a new one when it fails
– Need a reliable place to store its state

● You told us to use ZooKeeper in April 2010
● But ZooKeeper is hard to use

 → so we started LogCabin
● And Paxos is hard to understand

→ so we started Raft

Outline

● Introduce the problem Paxos and Raft solve
● Discuss where we think Paxos went wrong

and why Raft is easier to understand
● Give an overview of Raft
● Go into detail on Raft's leader election
● Project status

Birds-eye view

● Configuration service is available when a
majority of replicas is available

Replicated state machines

● State machine provides primitives for leader election, small amount of
storage, etc

– Easy to implement
– Interface is application-specific

● Replicated log feeds commands to state machine

– Same log → same sequence of states, outputs
● Raft and Paxos are two consensus algorithms to manage the

replicated log

What's wrong with Paxos?

● Hard to understand

– Not many computer scientists understand it
– My attempt at teaching Paxos at last year's SEDCL

retreat left everyone in the audience in fear
● Hard to implement

– Requires complex “optimizations” to be practical
– Leaves many “details” unspecified

“There are significant gaps between the description of the
Paxos algorithm and the needs of a real-world system.”

– Chandra, et al. Paxos Made Live

Paxos decomposition

● Basic Paxos (single-decree
Paxos) solves a smaller
problem: it manages a
single replicated log entry

● Running an instance of the
algorithm for each log entry
results in a replicated log

● Optimizations that make
this practical are called
Multi-Paxos

Why is this decomposition bad?

● Basic Paxos

– Suitable for theory, not great for practice
– The problem of agreeing on a single value is hard to relate to

(this is what theoreticians call consensus)
– The two phases of the algorithm are hard to separate

● Multi-Paxos

– Requires reasoning across instances of Basic Paxos
– Fundamentally different behavior from Basic Paxos

● Chooses a leader as an optimization, but does not use it to
simplify the algorithm

● No advantage to concurrent operation when the log is
fundamentally sequential

Can we design a more understandable
consensus algorithm?

How is Raft more understandable?

● Solves the real problem

– Manages the replicated log directly
– Uses sequential ordering

● Centralizes decisions

– The leader manages all changes to the logs
– Other servers are completely passive

● Decomposes into subproblems well
● Ready to be implemented (and actually implemented in C++)

– RPCs are well-defined and small in size. There's just two
of them.

– Includes practical considerations

Raft overview

● Leader election:

– elects a leader when the cluster doesn't have one
● Replication:

– the leader orders client requests into the log and
replicates them

● Restoring consistency after a crash:

– a new leader cleans up temporary inconsistencies that
arise when leaders crash

● Eliminating zombies:

– a new leader prevents zombie leaders from modifying
the replicated log

Server states

● Each server is either a follower, a candidate, or a leader
● In normal operation, there is exactly one leader and all other

servers are followers
● Followers are passive

Terms

● Each term begins with an election
● Usually an election succeeds in choosing a leader for the

rest of the term
● In case of a split vote, the term will end with no leader,

and a new term with a new election starts shortly
● Leader election guarantees that there is at most one

leader per term

Leader election

● Leaders send periodic heartbeats to all followers to maintain their
authority

● After an election timeout, a follower begins an election

– Increments its current term
– Transitions to the candidate state
– Issues RequestVote RPCs in parallel to the other servers

● Servers may only vote once per term, first-come-first-served
● Three possible outcomes:

– It wins the election by receiving votes from a majority → becomes
leader

– Another server establishes itself as a leader → returns to follower
– Another election timeout goes by (split vote) → new election

Randomized election timeouts
● Purpose: prevent split votes from occurring forever
● Election timeouts are chosen from a uniform range

● Previously considered more complex approaches

– Server ranks – subtle bugs
– Exponential random backoff – unnecessary

Is Raft easier to understand
than Paxos?

● NSDI PC doesn't think so, but they're Paxos experts!
● Running an experiment to find out – science!
● Participants are students of David Mazieres's Advanced OS

class
● David will teach a lecture on Paxos, John will teach a lecture

on Raft
● Students will be quizzed to determine which one they learn

better
● Two groups allow us to factor out differences in individuals:

– Raft video and quiz, then Paxos video and quiz
– Paxos video and quiz, then Raft video and quiz

Project status

● Raft is implemented
in LogCabin (~1500
lines of C++)

● Ankita is using it for
RAMCloud's
coordinator

● Code and paper draft
available on
RAMCloud wiki

Conclusions

● We think Raft is more understandable than Paxos

– Solves the real problem
– Decomposes well

● Finding a simple and understandable solution is
hard

– Need to be open to changing your mind
● The end result is much more valuable

– Easier to learn, discuss, implement, and extend

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19

