
Transactions on RAMCloud
SEDCL Forum

January, 2015

Collin Lee and Seo Jin Park
Stanford University

●  Goals
●  API & Semantics
●  Commit Protocol
●  Recovery Protocol
●  Implementation Details
●  Using Linearizability
●  Conclusion
●  Questions and Feedback

January 30, 2015 Transactions on RAMCloud Slide 2

Overview

What are we trying to build?
●  Multi-object atomic updates
●  Tolerate client failures
●  Performance

§  Low-latency
§  Large scale: 1M+ clients

●  Simple programmer interface
●  Non-goals and assumption:

§  No long running transactions
§  Small commit sets: 100 objects or less

January 30, 2015 Transactions on RAMCloud Slide 3

Transactions Goals

class Transaction {

 read(tableId, key) => blob

 write(tableId, key, blob)
 delete(tableId, key)

 commit() => COMMIT or ABORT

}

January 30, 2015 Transactions on RAMCloud Slide 4

Transaction Client API

●  Optimistic concurrency control
●  Client-side transaction cache

●  Multi-object conditional operation
§  Operations are conditioned on a version
§  Commit succeeds if all operation conditions are met

January 30, 2015 Transactions on RAMCloud Slide 5

Transaction Commit Semantics

ReadOp {tableId, key, version}

WriteOp {tableId, key, version, blob}

DeleteOp {tableId, key, version}

commit(OpList[]) => COMMIT or ABORT

DM(s) ●  Standard 2PC
with remote Tx
Manager

●  2 RTT + 2D
(1.5 RTT + 1D
with
optimization)

●  Other systems
do better

●  Can we
leverage
linearizability?

January 30, 2015 Transactions on RAMCloud Slide 6

Transaction Commit (Attempt 1)

TM RC Backups

Durable Log Write

PREPARE

DECISION

VOTE

DECISION

Client

Durable Log Write

START-COMMIT

Durable Log Write

Data Master(s)

January 30, 2015 Transactions on RAMCloud Slide 7

Transaction Commit

Client RC Backups

Durable Log Write

PREPARE

DECISION

VOTE

DECISION

Durable Log Write

●  Client driven 2PC
●  RPCs:

§  PREPARE() => VOTE
§  DECISION()

●  Client blocked time:
1RTT + 1D

●  Decisions sent in the
background

●  Better normal case
operation

O
bjects Locked

D
on

e
in

 B
ac

kg
ro

un
d

Data Master(s)

January 30, 2015 Transactions on RAMCloud Slide 8

Transaction Recovery

RM RC Backups

Durable Log Write

REQUEST-ABORT

DECISION

VOTE

DECISION

Durable Log Write

Durable Log Write

●  Server driven recovery
●  RPCs:

§  START-RECOVERY()
§  REQUEST-ABORT() =>
VOTE

§  DECISION()

●  Initiated by "worried"
data masters

●  Reuses common
infrastructure

START-
RECOVE

RY

January 30, 2015 Transactions on RAMCloud Slide 9

What is Durably Logged?

Client Data Master

D

PREPARE

DECISION

VOTE

D

Two types of log data
●  Lock & buffered write

§  During crash recovery of data
master, the lock will be
grabbed again.

§  The buffered new value will
be written on COMMIT.

§  This record is removed during
processing DECISION.

●  Vote
§  Automatically managed by

linearizability infrastructure.

Vote
Lock &

buffered
write

New
object

Tombstone
of Lock &
buffered

write

*Grouped entries are written atomically.

●  RPCs in RAMCloud
were not linearizable.
§  If response of RPC is lost

(either on network layer or
on data master’s crash),
client doesn’t know RPC
was processed or not.

§  If client retries same RPC, it
may see inconsistent result.

January 30, 2015 Transactions on RAMCloud Slide 10

Linearizable RPC Revisited (1)

Client Data Master

Foo = <old, 1>

Cond_write (Obj=foo, ver=1, Val=new)

Retry: cond_write (Obj=foo, ver=1, Val=new)

Succeed
ed

Lost

Failed

Foo = <new, 2>

●  Save the results of RPCs in log durably until
client acknowledges its receipt, and respond
with the old result without re-executing.
§  Lightweight solution on RAMCloud

§  Write latency penalty: ~200ns.

§  Per client state is 170 bytes and each server can sustain 1M
clients with 170 MB of storage overhead.

January 30, 2015 Transactions on RAMCloud Slide 11

Linearizable RPC Revisited (2)

January 30, 2015 Transactions on RAMCloud Slide 12

Linearizability Simplifies TX Recovery

Client Data Master

PREPARE

COMMIT
-VOTE

●  Vote is saved durably by
linearizability
infrastructure.
§  Since response, VOTE, is

saved, we always get same
vote for any retried PREPARE.

§  Crash recovery of data master
can be handled by resending
PREPARE.

§  On client crash, transaction
recovery coordinator resend
PREPARE as if it was sent
from client (with request to
abort if possible).

Recovery Mgr

COMMIT-VOTE

REQUES
T-ABOR

T

PREPARE

COMMIT
-VOTE

D

January 30, 2015 Transactions on RAMCloud Slide 13

Linearizability Simplifies GC

Client Data Master
PREPARE

DECISION

VOTE

●  Challenge: when to delete
record of vote & free up
space?
§  Client knows outcome
§  All servers applied DECISION

durably.

●  Sinfonia: all-to-all msg of
applied TX IDs.

●  Leverage linearizability:
§  As client acknowledges the

completion of TX, servers
may remove vote log.

ACK

PREPARE(Next TX)

Vote

O
bject lifetim

e

●  Client-driven multi-object atomic updates in
1RTT + 1D synchronous time

●  Simplifying transactions using linearizability
●  Progress

§  Linearizability implementation DONE!
§  Transactions implementation (early next month)

●  What's next?
§  Looking for feedback
§  Benchmarking & Systems for comparison
§  API improvements & performance tuning

January 30, 2015 Transactions on RAMCloud Slide 14

Conclusion

