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Overview 



What are we trying to build? 
●  Multi-object atomic updates 
●  Tolerate client failures 
●  Performance 

§  Low-latency 
§  Large scale: 1M+ clients 

●  Simple programmer interface 
●  Non-goals and assumption: 

§  No long running transactions 
§  Small commit sets: 100 objects or less 
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Transactions Goals 



class Transaction { 

 read(tableId, key) => blob 

 write(tableId, key, blob) 
 delete(tableId, key) 

 commit() => COMMIT or ABORT 

} 
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Transaction Client API 

●  Optimistic concurrency control 
●  Client-side transaction cache 



●  Multi-object conditional operation 
§  Operations are conditioned on a version 
§  Commit succeeds if all operation conditions are met 
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Transaction Commit Semantics 

ReadOp {tableId, key, version} 

WriteOp {tableId, key, version, blob} 

DeleteOp {tableId, key, version} 

 

commit(OpList[]) => COMMIT or ABORT 



DM(s) ●  Standard 2PC 
with remote Tx 
Manager 

●  2 RTT + 2D  
(1.5 RTT + 1D 
with 
optimization) 

●  Other systems 
do better 

●  Can we 
leverage 
linearizability? 
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Transaction Commit (Attempt 1) 

TM RC Backups 

Durable Log Write 

PREPARE 

DECISION 

VOTE 

DECISION 

Client 

Durable Log Write 

START-COMMIT 

Durable Log Write 



Data Master(s) 
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Transaction Commit 

Client RC Backups 

Durable Log Write 

PREPARE 

DECISION 

VOTE 

DECISION 

Durable Log Write 

●  Client driven 2PC 
●  RPCs: 

§  PREPARE() => VOTE 
§  DECISION() 

●  Client blocked time:
1RTT + 1D  

●  Decisions sent in the 
background 

●  Better normal case 
operation 
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Data Master(s) 

January 30, 2015 Transactions on RAMCloud Slide 8 

Transaction Recovery 

RM RC Backups 

Durable Log Write 

REQUEST-ABORT 

DECISION 

VOTE 

DECISION 

Durable Log Write 

Durable Log Write 

●  Server driven recovery 
●  RPCs: 

§  START-RECOVERY() 
§  REQUEST-ABORT() => 
VOTE 

§  DECISION() 

●  Initiated by "worried" 
data masters 

●  Reuses common 
infrastructure 

START-
RECOVE

RY 
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What is Durably Logged? 

Client Data Master 

D 

PREPARE 

DECISION 

VOTE 

D 

Two types of log data 
●  Lock & buffered write 

§  During crash recovery of data 
master, the lock will be 
grabbed again. 

§  The buffered new value will 
be written on COMMIT. 

§  This record is removed during 
processing DECISION. 

●  Vote 
§  Automatically managed by 

linearizability infrastructure. 

Vote 
Lock & 

buffered 
write 

New 
object 

Tombstone 
of Lock & 
buffered 

write 

*Grouped entries are written atomically. 



●  RPCs in RAMCloud 
were not linearizable. 
§  If response of RPC is lost 

(either on network layer or 
on data master’s crash), 
client doesn’t know RPC 
was processed or not. 

§  If client retries same RPC, it 
may see inconsistent result. 
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Linearizable RPC Revisited (1) 

Client Data Master 

Foo = <old, 1> 

Cond_write (Obj=foo, ver=1, Val=new) 

Retry: cond_write (Obj=foo, ver=1, Val=new) 

Succeed
ed 

Lost 

Failed 

Foo = <new, 2> 



●  Save the results of RPCs in log durably until 
client acknowledges its receipt, and respond 
with the old result without re-executing. 
§  Lightweight solution on RAMCloud 

§  Write latency penalty: ~200ns. 

§  Per client state is 170 bytes and each server can sustain 1M 
clients with 170 MB of storage overhead. 
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Linearizable RPC Revisited (2) 
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Linearizability Simplifies TX Recovery 

Client Data Master 

PREPARE 

COMMIT
-VOTE 

●  Vote is saved durably by 
linearizability 
infrastructure. 
§  Since response, VOTE, is 

saved, we always get same 
vote for any retried PREPARE. 

§  Crash recovery of data master 
can be handled by resending 
PREPARE. 

§  On client crash, transaction 
recovery coordinator resend 
PREPARE as if it was sent 
from client (with request to 
abort if possible). 

Recovery Mgr 

COMMIT-VOTE 

REQUES
T-ABOR

T 

PREPARE 

COMMIT
-VOTE 

D 
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Linearizability Simplifies GC 

Client Data Master 
PREPARE 

DECISION 

VOTE 

●  Challenge: when to delete 
record of vote & free up 
space? 
§  Client knows outcome 
§  All servers applied DECISION 

durably. 

●  Sinfonia: all-to-all msg of 
applied TX IDs. 

●  Leverage linearizability: 
§  As client acknowledges the 

completion of TX, servers 
may remove vote log. 

ACK 

PREPARE(Next TX) 

Vote 

O
bject lifetim

e 



●  Client-driven multi-object atomic updates in  
1RTT + 1D synchronous time 

●  Simplifying transactions using linearizability 
●  Progress 

§  Linearizability implementation DONE! 
§  Transactions implementation (early next month) 

●  What's next? 
§  Looking for feedback 
§  Benchmarking & Systems for comparison 
§  API improvements & performance tuning  
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Conclusion 


