
SLIK: Scalable Low-Latency
Indexes for a Key-Value Store

Ankita Kejriwal
Stanford University

(With Arjun Gopalan, Ashish Gupta, Greg Hill, Zhihao Jia, Stephen Yang

and John Ousterhout)

●  RAMCloud 1.0 over a year ago
●  Support higher-level data models

§  Without sacrificing latency and scalability?

●  SLIK:
 Scalable, Low-latency Indexes for a Key-value Store
●  Lookups and range queries on attributes that are not

the primary key (i.e., secondary keys!)
●  Performance

§  10-14 µs indexed reads
§  29-37 µs writes/overwrites of objects with one indexed attribute.

●  Work in Progress!
Secondary Indexing in RAMCloud Slide 2

Introduction

●  SEDCL Context:
§  Forum 2014: Design done, implementation underway
§  Retreat 2014: Basic implementation done, preliminary

performance numbers
§  Forum 2015: Additional features, cleaner and faster code

Secondary Indexing in RAMCloud Slide 3

SLIK Status

● Object format and API
●  Index memory allocation
● Failure / Restoration
●  Index placement / partitioning
● Split and migrate index partition
● Consistency

Secondary Indexing in RAMCloud Slide 4

Overview

Secondary Indexing in RAMCloud Slide 5

Object Format and API
Tables

Object

Key
Version

Value

Primary Key

Object

Key[0]

Version

Blob

Key[2]
Key[1]

Num Keys

….

Primary Key

Tables

Secondary Indexing in RAMCloud Slide 6

Object Format and API
Tables

Object

Key[0]

Version

Blob

Key[2]
Key[1]

Num Keys

….

createIndex(tableId,	 indexId,	

	 	 	 	 	 	 	 	 	 	 	 	 indexType)	

dropIndex(tableId,	 indexId)	

Primary Key

Secondary Indexing in RAMCloud Slide 7

Object Format and API
Tables

Object

Key[0]

Version

Blob

Key[2]
Key[1]

Num Keys

….

createIndex(tableId,	 indexId,	

	 	 	 	 	 	 	 	 	 	 	 	 indexType)	

dropIndex(tableId,	 indexId)	

	

write(tableId,	 keys,	 value)	

	

readRange(tableId,	 indexId,	

	 	 	 	 	 	 	 	 	 	 firstKey,	 lastKey)	

à  New	 streaming	 interface	
à  Easier	 to	 use	
à  Faster	
à  Discovered	 consistency	 issue	 (eek!)	

Primary Key

Secondary Indexing in RAMCloud Slide 8

Index Memory Allocation

●  Index structured as Btree
§ Originally: Open source Btree package

(Panthema STX B+ Tree)
§ Now: In-house implementation

●  Allow variable sized keys
●  Simpler, more efficient code path
●  Efficient inserts
●  Approx 1 µs faster in both reads and writes!

● Map tree nodes onto RAMCloud objects

Secondary Indexing in RAMCloud Slide 9

Failure / Restoration

● Map tree nodes onto RAMCloud objects
à  Index stored in RAMCloud log
à  Index crash recovery ~
 (Pre-existing) Object Crash Recovery

Secondary Indexing in RAMCloud Slide 10

Index Placement / Partitioning

•  Goal: Scalability
•  Range Partitioning
•  Distribute index and table independently

Secondary Indexing in RAMCloud Slide 11

Split and Migrate Index Partition

●  Goals:
§  Split an index partition
§  Migrate one of the resulting partitions to a different server
§  Allow concurrent reads/writes

Secondary Indexing in RAMCloud Slide 12

Split and Migrate Index Partition

●  Goals:
§  Split an index partition
§  Migrate one of the resulting partitions to a different server
§  Allow concurrent reads/writes

Secondary Indexing in RAMCloud Slide 13

Split and Migrate Index Partition

●  Goals:
§  Split an index partition
§  Migrate one of the resulting partitions to a different server
§  Allow concurrent reads/writes

Secondary Indexing in RAMCloud Slide 14

Split and Migrate Index Partition

walk the log and migrate relevant objects to S2
lock head

metadata: S1: A to L
unlock

send new data (if any)

head of log

metadata:
S1: A to Z (state: OK => servicing requests)
S2: M to Z (state: Recovering => not servicing requests)

●  Solution: Take advantage of RAMCloud Log Structure
§  Example: S1: [A to Z] à S1: [A to L] and S2: [M to Z]

metadata:
S1: A to L (state: OK)
S2: M to Z (state: OK) t

S1:

Consistency

•  Indexed object writes: distributed operation
•  Goal: Strong consistency
•  Goal: Avoid transactions
•  Solution:

•  Longer index lifespan (via ordered writes)
•  Use object to determine index entry liveness (filter invalid

index entries)

Foo Bob …
pk key1

Foo Bob …
pk key1

Foo Sam …
pk key1

Foo Sam …
pk key1

Data

Index
Entry Bob: Foo Bob: Foo Bob: Foo

Sam: Foo Sam: Foo Sam: Foo

step 1 step 2 step 3

value value value value

Secondary Indexing in RAMCloud Slide 16

Consistency Issue

Bob: obj1

Oscar: obj2 Alice: obj3

Carol: obj4

Peggy: obj5

Index partition 1:
fname: A to L

Index partition 2:
fname: M to Z

Secondary Indexing in RAMCloud Slide 17

Consistency Issue

Bob: obj1

Oscar: obj2 Alice: obj3

Carol: obj4

Peggy: obj5

Index partition 1:
fname: A to L

Index partition 2:
fname: M to Z

Client 1: Streaming lookup: Find objects with fname between A and Z

Secondary Indexing in RAMCloud Slide 18

Consistency Issue

Bob: obj1

Oscar: obj2 Alice: obj3

Carol: obj4

Peggy: obj5

Client 1: Streaming lookup: Find objects with fname between A and Z

Alice: obj3 Bob: obj1 Carol: obj4
time

Index partition 1:
fname: A to L

Index partition 2:
fname: M to Z

Secondary Indexing in RAMCloud Slide 19

Consistency Issue

Oscar: obj2 Alice: obj3

Carol: obj4

Peggy: obj5

Client 1: Streaming lookup: Find objects with fname between A and Z

Alice: obj3 Bob: obj1 Carol: obj4

Client 2: Modify fname for obj1 to Sam

time

Bob: obj1

Index partition 1:
fname: A to L

Index partition 2:
fname: M to Z

Secondary Indexing in RAMCloud Slide 20

Consistency Issue

Sam: obj1

Oscar: obj2 Alice: obj3

Carol: obj4

Peggy: obj5

Client 1: Streaming lookup: Find objects with fname between A and Z

Alice: obj3 Bob: obj1 Carol: obj4

Client 2: Modify fname for obj1 to Sam

time

Index partition 1:
fname: A to L

Index partition 2:
fname: M to Z

Secondary Indexing in RAMCloud Slide 21

Consistency Issue

Sam: obj1

Oscar: obj2 Alice: obj3

Carol: obj4

Peggy: obj5

Client 1: Streaming lookup: Find objects with fname between A and Z

Alice: obj3 Bob: obj1 Carol: obj4 Sam: obj1 Oscar: obj2 Peggy: obj5
time

Index partition 1:
fname: A to L

Index partition 2:
fname: M to Z

Secondary Indexing in RAMCloud Slide 22

Consistency Issue

Sam: obj1

Oscar: obj2 Alice: obj3

Carol: obj4

Peggy: obj5

Client 1: Streaming lookup: Find objects with fname between A and Z

Alice: obj3 Bob: obj1 Carol: obj4 Sam: obj1 Oscar: obj2 Peggy: obj5
time

Client 1 sees obj1 twice!

Index partition 1:
fname: A to L

Index partition 2:
fname: M to Z

Secondary Indexing in RAMCloud Slide 23

Consistency Issue

•  Streaming lookup with concurrent writes
can cause consistency issues

•  Client can see an object multiple times
•  Client can miss an object

•  Looking for a solution
•  Nothing simple and scalable so far
•  Ideas?

• Consistency and scale at odds with each

other, after all?

●  SLIK: lookups & range queries (new streaming
interface) on secondary keys

●  Current performance:
§  10-14 µs indexed reads (1 µs improvement since retreat ‘14)
§  29-37 µs writes of objects with one index attribute (>5 µs)
§  33-49 µs writes/overwrites for objects with 1-10 indexes (>10 µs)

●  Strong-ish consistency (tradeoff with scalability)
●  Ability to split and migrate partitions while allowing

concurrent operations
●  Work in progress

Secondary Indexing in RAMCloud Slide 24

Summary

Thank you!

