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● Goal: take back consistency in large-scale systems 

● Approach: distinct layer for linearizability 

● Reusable Infrastructure for Linearizability (RIFL) 
 At-least-once RPC  exactly-once RPC 
 Records RPC results durably 
 To handle reconfiguration, associates metadata with object 

● Implemented on distributed KV store, RAMCloud 
 Low latency: < 5% (500ns) latency overhead 
 Scalable: supports states for 1M clients 

● RIFL simplified implementing transactions 
 Simple distributed transaction commits in ~22 μs 
 Outperforms H-Store 
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Overview 



Strongest form of consistency for concurrent systems 
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What is Linearizability? 

time 

Client sends 
request for operation 

Client receives 
response 

Behaves as if executing exactly once and instantaneously 



● Most systems: at-least-once semantics, 
           not exactly-once 
 Retry (possibly) failed operations after crashes 
 Idempotent semantics: repeated executions O.K.? 

 
 

 
 
 

● At-least-once + idempotency ≠ linearizability 
● Need exactly-once semantics! 
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What is Missing from Existing Systems? 

client A 

shared object 
in server 2 1 2 3 

read: 2 client B 
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write(2) 

read: 2 write(3) 

retry 



Architecture of RIFL 
• RIFL saves results of RPCs 

• If client retries, 
• Don’t re-execute 
• Return saved result 

 

 Key problems 
• Unique identification for each RPC 
• Durable completion record 
• Retry rendezvous 
• Garbage collection 
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● Each RPC must have a unique ID 
● Retries use the same ID 
● Client assigns RPC IDs 

Slide 6 

1) RPC Identification 

Client ID 
64-bit integer 

Sequence Number 
64-bit integer 

• System-wide unique • Monotonically increases  
• Assigned by client 



● Written when an operation completes 
● Same durability as object(s) being mutated 
● Atomically created with object mutation 
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2) Durable Completion Record 

Completion Record 
Client ID Sequence 

Number 

RPC result for client 



● Data migration is popular in large systems (eg. crash 
recovery) 

● Retries must find completion record 
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3) Retry Rendezvous 
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● Associate each RPC with a specific object 
● Completion record follows the object during 

migration 
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3) Retry Rendezvous (cont.) 

Completion Record 
Client ID Sequence 

Number 

RPC result for client 

Object Identifier 



● Lifetime of completion record 
≠ lifetime of object value 

● Can’t GC if client may retry 
later 

● Server knows a client will 
never retry if 

1. Client acknowledges 
receipt of RPC result 
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4) Garbage Collection 

client A 
ACK #2 

Seq# 1: Finished 
Seq# 2: Finished 
Seq# 3: Finished 

… 
Seq# 9: Finished 

Seq# 10: Finished 

Completion Records 
of client A 



● Lifetime of completion record 
≠ lifetime of object value 

● Can’t GC if client may retry 
later 

● Server knows a client will 
never retry if 

1. Client acknowledges 
receipt of RPC result 

2. Detect client crashes with 
lease. 

Slide 11 

4) Garbage Collection 

client A 
ACK #2 

Seq# 1: Finished 
Seq# 2: Finished 
Seq# 3: Finished 

… 
Seq# 9: Finished 

Seq# 10: Finished 

Completion Records 
of client A 
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Linearizable RPC in Action 

Client 5, Seq# 9 

Started 

Durable Storage 

Server 

Object 
Value: 

1 

Client 5 

ResultTracker 
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e(
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Linearizable RPC in Action 

Client 5, Seq# 9 
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Durable Storage 

Server 
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Linearizable RPC in Action 

Client 5, Seq# 9 
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Handling Retries 
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Performance of RIFL in 
RAMCloud 
 Achieved linearizability without hurting performance of 

RAMCloud 
• Minimal overhead on latency(< 5%) and throughput (~0%) 
• Supports state for 1M clients 
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● General-purpose distributed in-memory key-value 
storage system 

● Durability: 3-way replication 

● Fast recovery: 1~2 sec for server crash 

● Large scale: 1000+ servers, 100+ TB 

● Low latency: 4.7 μs read, 13.5 μs write (100B object) 
 

● RIFL is implemented on top of RAMCloud 
 Core: 1200 lines of C++ for infrastructure 
 Per operation: 17 lines of C++ to make an operation linearizable 
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Why RAMCloud? 



● Server: Xeon 4 cores at 3 GHz 
● Fast Network 

 Infiniband (24 Gbps) 
 Kernel-bypassing transport (RAMCloud default) 
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Experimental Setup 
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Impact on Latency 

Median Latency 
13.5 μs vs. 14.0 μs 

99% Latency 
69.0 μs vs. 69.4 μs 
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Impact on Throughput 



● Storage impact: 116B per client  116MB for 1M clients 

● Latency impact (linearizable write, unloaded): 
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Impact of Many Client States 

Median 
1M client 
14.5 μs 

Median 
1 client 
14.0 μs 



Case study: 
Distributed Transactions 
with RIFL 
 Extended use of RIFL for more complex operations 

 Two-phase commit protocol based on Sinfonia 

 RIFL reduced mechanisms of Sinfonia significantly 

 Lowest possible round-trip for distributed transactions 
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class Transaction { 

 read(tableId, key) => blob 

 write(tableId, key, blob) 
 delete(tableId, key) 

 commit() => COMMIT or ABORT 

} 
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Transaction Client API 

● Optimistic concurrency control 
● Mutations are “cached” in client until commit 



● commit(): atomic multi-object operation 
 Operations in client’s cache are transmitted to servers 
 Conditioned on a version (same version ≡ object didn’t change) 
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Transaction Commit Semantics 

Tr
an

sa
ct

io
n 

User Transaction API 

read 

cache 
[version, new

 value] 

Server 

S
torage 

write 

read 

Transaction 
Commit Protocol 

check version & 
apply changes 

commit 



Participant 
Server 
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Transaction Commit Protocol 

Client Backups 

Durable Log Write 

Durable Log Write 

● Client-driven 2PC 
● RPCs: 

 PREPARE() => VOTE 

 DECISION() 

● Fate of TX is determined 
after 1st phase 

● Client blocked for 
1 RTT + 1 log write 

● Decisions processed in 
background 

O
bjects Locked 

D
on

e 
in

 B
ac

kg
ro

un
d 



Participant 
Server 
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Transaction Recovery on Client-crash  
Recovery 
Coordinator Backups 

Durable Log Write 

Durable Log Write 

● Server-driven 2PC 
● Initiated by "worried" 

server 
● RPCs: 

 START-RECOVERY() 

 REQUEST-ABORT() => 
VOTE 

 DECISION() 



● PREPARE() => VOTE is linearizable RPC 

● Server crash: client retries PREPARE 
● Client crash: recovery coordinator sends fake 

PREPARE (REQUEST-ABORT) 
 Query ResultTracker with same RPC ID from client 
 Writes completion record of PREPARE / REQUEST-ABORT 

● Race between client’s 2PC and recovery 
coordinator’s 2PC is safe 
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RIFL Simplifies TX Recovery 



Performance of 
Transactions in RAMCloud 
 Simple distributed transactions commits in 22 μs 

 TPC-C benchmark shows RIFL-based transactions 
outperform H-Store 
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Latency of Transactions 

3 servers; 1 obj / server 
22 μs 

60 servers; 
5 objs / server 
385 μs 



● TPC-C simulates order fulfillment systems 
 New-Order transaction: 23 reads, 23 writes 
 Used full-mix of TPC-C (~10% distributed) 
 Latency is measured from end to end 
 Modified TPC-C for benchmark to increase server load 

● Compared with H-Store 
 Main-memory DBMS for OLTP 

● Two RAMCloud configurations 
 Kernel-bypass for maximum performance 
 Kernel TCP for fair comparison 
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TPC-C Benchmark 



● TpmC: NewOrder 
committed per minute 

● 210,000 TpmC / server 
● Latency: ~500µs 
● RAMCloud faster than 

H-Store (even over 
TCP) 

● Limited by serial log-
replication 
(need batching) 
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TPC-C Performance 

10x 

1000x 



● Faster simple operations (eg. atomic increment) 
 lower latency 
 higher throughput 

● Can be added on top of existing systems 
● Better modular decomposition 

 easier to implement transaction Slide 32 

Should linearizability be a foundation? 

Transaction 

Linearizability 

RIFL 

vs. 
Transaction 

Linearizability 

Traditional DB 



● Distinct layer for linearizability   
take back consistency in large-scale systems 

● RIFL saves results of RPCs; If client retries, returns 
saved result without re-executing 
 0.5us (< 5%) latency overhead, almost no throughput overhead. 

● RIFL makes transactions easier 
 RIFL-based RAMCloud transaction: ~20 μs for commit 
 Outperform H-Store for TPC-C benchmark 
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Conclusion 
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Questions 
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