
Implementing Linearizability at

Large Scale and Low Latency

Collin Lee, Seo Jin Park,
Ankita Kejriwal, †Satoshi Matsushita,
John Ousterhout

Platform Lab
Stanford University †NEC

● Goal: take back consistency in large-scale systems

● Approach: distinct layer for linearizability

● Reusable Infrastructure for Linearizability (RIFL)
 At-least-once RPC exactly-once RPC
 Records RPC results durably
 To handle reconfiguration, associates metadata with object

● Implemented on distributed KV store, RAMCloud
 Low latency: < 5% (500ns) latency overhead
 Scalable: supports states for 1M clients

● RIFL simplified implementing transactions
 Simple distributed transaction commits in ~22 μs
 Outperforms H-Store

Slide 2

Overview

Strongest form of consistency for concurrent systems

Slide 3

What is Linearizability?

time

Client sends
request for operation

Client receives
response

Behaves as if executing exactly once and instantaneously

● Most systems: at-least-once semantics,
 not exactly-once
 Retry (possibly) failed operations after crashes
 Idempotent semantics: repeated executions O.K.?

● At-least-once + idempotency ≠ linearizability
● Need exactly-once semantics!

Slide 4

What is Missing from Existing Systems?

client A

shared object
in server 2 1 2 3

read: 2 client B

2

write(2)

read: 2 write(3)

retry

Architecture of RIFL
• RIFL saves results of RPCs

• If client retries,
• Don’t re-execute
• Return saved result

 Key problems
• Unique identification for each RPC
• Durable completion record
• Retry rendezvous
• Garbage collection

Slide 5

● Each RPC must have a unique ID
● Retries use the same ID
● Client assigns RPC IDs

Slide 6

1) RPC Identification

Client ID
64-bit integer

Sequence Number
64-bit integer

• System-wide unique • Monotonically increases
• Assigned by client

● Written when an operation completes
● Same durability as object(s) being mutated
● Atomically created with object mutation

Slide 7

2) Durable Completion Record

Completion Record
Client ID Sequence

Number

RPC result for client

● Data migration is popular in large systems (eg. crash
recovery)

● Retries must find completion record

Slide 8

3) Retry Rendezvous

Ti
m

e

client server1 server2

CR

W
rit

e

CR

Object

Object

● Associate each RPC with a specific object
● Completion record follows the object during

migration

Slide 9

3) Retry Rendezvous (cont.)

Completion Record
Client ID Sequence

Number

RPC result for client

Object Identifier

● Lifetime of completion record
≠ lifetime of object value

● Can’t GC if client may retry
later

● Server knows a client will
never retry if

1. Client acknowledges
receipt of RPC result

Slide 10

4) Garbage Collection

client A
ACK #2

Seq# 1: Finished
Seq# 2: Finished
Seq# 3: Finished

…
Seq# 9: Finished

Seq# 10: Finished

Completion Records
of client A

● Lifetime of completion record
≠ lifetime of object value

● Can’t GC if client may retry
later

● Server knows a client will
never retry if

1. Client acknowledges
receipt of RPC result

2. Detect client crashes with
lease.

Slide 11

4) Garbage Collection

client A
ACK #2

Seq# 1: Finished
Seq# 2: Finished
Seq# 3: Finished

…
Seq# 9: Finished

Seq# 10: Finished

Completion Records
of client A

Slide 12

Linearizable RPC in Action

Client 5, Seq# 9

Started

Durable Storage

Server

Object
Value:

1

Client 5

ResultTracker

W
rit

e(
2)

Slide 13

Linearizable RPC in Action

Client 5, Seq# 9

Started

Durable Storage

Server

Object
Value:

2

Com. Record
CID: 5, Seq: 9

Success

Client 5

ResultTracker

W
rit

e(
2)

Slide 14

Linearizable RPC in Action

Client 5, Seq# 9

Finished

Durable Storage

Server

Object
Value:

2

Com. Record
CID: 5, Seq: 9

Success

Client 5

ResultTracker

W
rit

e(
2)

 Pointer

Slide 15

Handling Retries

Client 5, Seq# 9

Finished

Client 5, Seq# 9

Started

Client 5, Seq# 9

Started

Durable Storage

Server

Object
Value:

2

Com. Record
CID: 5, Seq: 9

Success

Object
Value:

2

Com. Record
CID: 5, Seq: 9

Success

Object
Value:

1

ResultTracker
W

rit
e(

2)

Ti
m

e

Client 5

Pointer

Performance of RIFL in
RAMCloud
 Achieved linearizability without hurting performance of

RAMCloud
• Minimal overhead on latency(< 5%) and throughput (~0%)
• Supports state for 1M clients

Slide 16

● General-purpose distributed in-memory key-value
storage system

● Durability: 3-way replication

● Fast recovery: 1~2 sec for server crash

● Large scale: 1000+ servers, 100+ TB

● Low latency: 4.7 μs read, 13.5 μs write (100B object)

● RIFL is implemented on top of RAMCloud
 Core: 1200 lines of C++ for infrastructure
 Per operation: 17 lines of C++ to make an operation linearizable

Slide 17

Why RAMCloud?

● Server: Xeon 4 cores at 3 GHz
● Fast Network

 Infiniband (24 Gbps)
 Kernel-bypassing transport (RAMCloud default)

Slide 18

Experimental Setup

Slide 19

Impact on Latency

Median Latency
13.5 μs vs. 14.0 μs

99% Latency
69.0 μs vs. 69.4 μs

Slide 20

Impact on Throughput

● Storage impact: 116B per client 116MB for 1M clients

● Latency impact (linearizable write, unloaded):

Slide 21

Impact of Many Client States

Median
1M client
14.5 μs

Median
1 client
14.0 μs

Case study:
Distributed Transactions
with RIFL
 Extended use of RIFL for more complex operations

 Two-phase commit protocol based on Sinfonia

 RIFL reduced mechanisms of Sinfonia significantly

 Lowest possible round-trip for distributed transactions

Slide 22

class Transaction {

 read(tableId, key) => blob

 write(tableId, key, blob)
 delete(tableId, key)

 commit() => COMMIT or ABORT

}

Slide 23

Transaction Client API

● Optimistic concurrency control
● Mutations are “cached” in client until commit

● commit(): atomic multi-object operation
 Operations in client’s cache are transmitted to servers
 Conditioned on a version (same version ≡ object didn’t change)

Slide 24

Transaction Commit Semantics

Tr
an

sa
ct

io
n

User Transaction API

read

cache
[version, new

 value]

Server

S
torage

write

read

Transaction
Commit Protocol

check version &
apply changes

commit

Participant
Server

Slide 25

Transaction Commit Protocol

Client Backups

Durable Log Write

Durable Log Write

● Client-driven 2PC
● RPCs:

 PREPARE() => VOTE

 DECISION()

● Fate of TX is determined
after 1st phase

● Client blocked for
1 RTT + 1 log write

● Decisions processed in
background

O
bjects Locked

D
on

e
in

 B
ac

kg
ro

un
d

Participant
Server

Slide 26

Transaction Recovery on Client-crash
Recovery
Coordinator Backups

Durable Log Write

Durable Log Write

● Server-driven 2PC
● Initiated by "worried"

server
● RPCs:

 START-RECOVERY()

 REQUEST-ABORT() =>
VOTE

 DECISION()

● PREPARE() => VOTE is linearizable RPC

● Server crash: client retries PREPARE
● Client crash: recovery coordinator sends fake

PREPARE (REQUEST-ABORT)
 Query ResultTracker with same RPC ID from client
 Writes completion record of PREPARE / REQUEST-ABORT

● Race between client’s 2PC and recovery
coordinator’s 2PC is safe

Slide 27

RIFL Simplifies TX Recovery

Performance of
Transactions in RAMCloud
 Simple distributed transactions commits in 22 μs

 TPC-C benchmark shows RIFL-based transactions
outperform H-Store

Slide 28

Slide 29

Latency of Transactions

3 servers; 1 obj / server
22 μs

60 servers;
5 objs / server
385 μs

● TPC-C simulates order fulfillment systems
 New-Order transaction: 23 reads, 23 writes
 Used full-mix of TPC-C (~10% distributed)
 Latency is measured from end to end
 Modified TPC-C for benchmark to increase server load

● Compared with H-Store
 Main-memory DBMS for OLTP

● Two RAMCloud configurations
 Kernel-bypass for maximum performance
 Kernel TCP for fair comparison

Slide 30

TPC-C Benchmark

● TpmC: NewOrder
committed per minute

● 210,000 TpmC / server
● Latency: ~500µs
● RAMCloud faster than

H-Store (even over
TCP)

● Limited by serial log-
replication
(need batching)

Slide 31

TPC-C Performance

10x

1000x

● Faster simple operations (eg. atomic increment)
 lower latency
 higher throughput

● Can be added on top of existing systems
● Better modular decomposition

 easier to implement transaction Slide 32

Should linearizability be a foundation?

Transaction

Linearizability

RIFL

vs.
Transaction

Linearizability

Traditional DB

● Distinct layer for linearizability
take back consistency in large-scale systems

● RIFL saves results of RPCs; If client retries, returns
saved result without re-executing
 0.5us (< 5%) latency overhead, almost no throughput overhead.

● RIFL makes transactions easier
 RIFL-based RAMCloud transaction: ~20 μs for commit
 Outperform H-Store for TPC-C benchmark

Slide 33

Conclusion

Slide 34

Questions

	Implementing Linearizability at Large Scale and Low Latency
	Overview
	What is Linearizability?
	What is Missing from Existing Systems?
	Architecture of RIFL
	1) RPC Identification
	2) Durable Completion Record
	3) Retry Rendezvous
	3) Retry Rendezvous (cont.)
	4) Garbage Collection
	4) Garbage Collection
	Linearizable RPC in Action
	Linearizable RPC in Action
	Linearizable RPC in Action
	Handling Retries
	Performance of RIFL in RAMCloud
	Why RAMCloud?
	Experimental Setup
	Impact on Latency
	Impact on Throughput
	Impact of Many Client States
	Case study:�Distributed Transactions with RIFL
	Transaction Client API
	Transaction Commit Semantics
	Transaction Commit Protocol
	Transaction Recovery on Client-crash
	RIFL Simplifies TX Recovery
	Performance of Transactions in RAMCloud
	Latency of Transactions
	TPC-C Benchmark
	TPC-C Performance
	Should linearizability be a foundation?
	Conclusion
	Questions

