| eader Election
RAMCloud Lunch Talk

Diego Ongaro

December 12, 2013

Intro

» Leader election safety is easy
» Its performance/availability/liveness is hard to
reason about
» Flaky networks, down servers, partitions,
reconfiguration
» Very dynamic, state space explodes

» Had a known bug in reconfiguration, felt unsure of
potential solutions

» Built a simulator to understand better and
evaluate solutions

Current Algorithm (Basic)

times out,
startsup timesout, new election
starts election

receives votes from
majority of servers

Follower Candidate

discovers current discovers server
leader or new term with higher term

» Servers may only vote once per term

» Server increments its term number when starting new
election

» Term numbers propagate across messages

» Start new election after random [100ms, 200ms] without
receiving heartbeat from current leader or granting vote

Current Algorithm (Up-To-Date Comparison)

» RequestVote RPC includes “length” of candidate’s
log (it's slightly more complicated than that, but length will
work for this talk)

» A voter will not vote for a candidate with a shorter
log than its own

» = elected leader’s log is at least as up-to-date as
majority of cluster

» Used to ensure Raft's safety properties

Normal Behavior (RAMCloud network)

submission / RAMCloud / logs same /terms same /
cluster 5/ 16 heartbeats / 10,000 trials

1.0 - 0.9999 -
0.9 -
0.8
5 & 0.9990 -
S 0.7 - S
o o
T 0.6 - i
Qo5+ £ 0.9900 -
To4- kS|
=}]
g 031 € 0.9000
Oo2- [Chaael
0.1 -
0.0 - 0.0000 -
T T T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 10 0 250 500 750 100C
Election Time (ms) Election Time (ms)

“RAMCloud”: 5-10 microsecond one-way network
latencies
» Works well, close to baseline (100ms)

Analytical Model

Cumulative Fraction
oooooooooo~
O—=-NWPOIONOWOO

T
100

1 1
120 140

1 1 1
160 180
Earliest Server Timeout (ms)

T
200

P(T<t)=1-—(1-1)°
P(T=t)=s(1-1t)"

E[T] =

1
s+1

servers
—1—6
—2 7
— 3-8
— 409
— 5

Normal Behavior (WAN network)

submission / WAN /logs same /terms same/
cluster 5/ 16 heartbeats / 10,000 trials

1.0 - 0.9999 -
0.9 -
0.8
5 & 0.9990 -
S 0.7 - S
o o
T 0.6 - i
Qo5+ £ 0.9900 -
To4- kS|
=}]
g 031 € 0.9000
Oo2- [Chaael
0.1 -
0.0 - 0.0000 -
T T T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 10 0 250 500 750 100C
Election Time (ms) Election Time (ms)

“WAN": 10-20 millisecond one-way network
latencies
» ~6% of elections a bit slower, why?

Analytical Model (2 candidates)

1.0 -

c 0.9 -
%0.8— servers

® 0.7 4 — 2 —6
L 0.6 -

© 0.5 - —3—7
£ 0.4 -

[+ — —
303- 4—|8
E0.2- —5-—9
3 0.1 -

0.0 -

1 1 1 1 1 1 1 1 1
0 20 40 60 80 100
Difference Between Earliest Two Server Timeouts (ms)

» Two concurrent candidates very frequent with WAN latency
» But two concurrent candidates ok, 1 can still get majority

» Difference has same distribution as earliest timeout?

Pseudo-Analytical Model (3 candidates)

1.0 -
§8g: servers
& 0.7 - 37
L 0.6 -
2 0.5 - —4—38
=04 -
© — —
EO.S- 5 9
£02- — 6
O 0.1 -

0.0 -

1 1 1 1 1 1 1 1
0 20 40 60 80 100
Difference Between Earliest Three Server Timeouts (ms)

» Three concurrent candidates 8% with 10ms latency

» What's this distribution?

Bad Receive

140 1 2 3 ye 2 g

o]0 1 2 3 4 2 6 state
il ot 111 1|0
o 4- A C
Dy |0 f 2 3 4 5 6 =l
6_

7 -

I I I I I I I I I I
100 200 300 400 500 600 700 800 900 1000
Time (ms)

O -

» Server 1 can send but can’t receive messages
» Doesn't get heartbeats, disrupts leaders
» Somewhat Byzantine, but similar issue occurs
when servers are removed from the cluster 10

Stale-Log-No-Bump Algorithm

» Voter won't adopt candidate’s term unless
candidate’s log is as up-to-date as voter's

» ldea: ignore RequestVotes from ineligible
candidates

» Awkward: terms not quite logical clock anymore

11

Different Log Lengths (Distribution)

stalelognobump / RAMCloud / logs diff-eqid / terms same /
cluster 5/ 16 heartbeats / 10,000 trials

1.0 - 0.9999 -
0.9 -
0.8
5 & 0.9990 -
S 0.7 - S
o o
T 0.6 - i
Qo5+ £ 0.9900 -
To4- kS|
=}]
g 031 € 0.9000
Oo2- [Chaael
0.1 -
0.0 - 0.0000 -
T T T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 10 0 500 1000 1500 200
Election Time (ms) Election Time (ms)

» Every server has a different log length = only 3
servers eligible to be leader
» Still acceptable, but what’s going on? 12

Different Log Lengths (Timeline)

149 l 2
PRI 1 2 | state
§3-° d 4 F
g4—g 1 E A C
5 0 1 : . L
6_
7 -
1 1 1
0 100 200
Time (ms)

» Server 1: log length 1 ... Server 5: log length 5

» Ineligible servers tie up votes

» Eligible servers need to time out another time to
increment their terms 13

Reconfiguration

vV vV v v v

g 1 z 3 i

01 2 3 34 state
g l 3 F
g i 3 2 ¢ s C
0 1

® ® ? ™ L
g l P

0 100 2(I)0 3(I)0 4(I)0 5(I)0 660
Time (ms)
Reconfigure from S1-S5 to S2-S6
Log lengths: S1:1, S2:1, S3:3, S4:3, S5:2, S6:1
S1 disrupts S2, in turn disrupts S4
Key problem: hard to bound time leader needs to update servers’ logs

Also fails for Bad Receive case when bad server has stale log 14

ZooKeeper Algorithm

Pre-vote phase: before incrementing term, check
to make sure your log is at least as up-to-date as a
majority

v

Works really well in all cases

v

Decrease in performance on WAN?

v

Large implementation change

v

15

Hesitant Algorithm

» Idea: Why do ZooKeeper's pre-vote phase all the
time when most of the time we don't need it?

» Candidate only restarts new election in next term if
a majority of voters say the candidate’s log is at
least as up-to-date as theirs

» Depends on property that if servers A’s log is less
up-to-date than server B, it remains that way until
server A's log changes (not 100% true but
probably true enough)

» Works well for Bad Receive case, reconfiguration
with 1 server removed

16

Reconfiguration (2 servers)

143 ¢ i 3 i 3 8 {

2498 1 3 2 ¢« 2 8 { state
ga 9 12 3[4l (s1gl 1 F
S410 12 3 4 508 1 Nl
n 0 12 3 4 5 6 7

54 ¢ > o : 5 : 3 > _

6 - 0 1’2 3 4 5 6 7

748 i 3 s 3 £ {

1 1 1 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 10001100
Time (ms)

» Reconfigure from S1-S5 to S3-57
» Log lengths: S1:1, S2:2, S3:1, S4:3, S5:3, S6:1, S7:3

» S2 disrupts cluster, then learns not to, then S1 makes S2
return to follower state

» Key problem: S2's amnesia

17

Persistent-Hesitant Algorithm

» What if servers remembered across terms that
their logs were less up-to-date than others?

» Any way this is better than ZooKeeper
(understandability)?

18

Reconfiguration (2 servers)

phesitant / RAMCloud / logs 1old2both3old4new5Snew6old7new /terms same /
cluster 1-5t03-7:1old2both3old4new5new6old7new / 16 heartbeats / 10,000 trials

1.0 - 0.9999 -
0.9
0.8 -
5 & 0.9990
G 0.7 g
L 0.6 R
Qo5+ 2 0.9900 -
T4~ s
] >
£ 02+ € 0.9000
Oo.2- [Shactasl
0.1
0.0 0.0000 -
T T T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 10 0 250 500 750 100C
Election Time (ms) Election Time (ms)

» Works ok
» Extra time needed for S1, S2 to collect rejections

19

Approaches Outside the Model

Multicast: send heartbeats on a well-known multicast
address

» Won't fix Bad Receive alone, but handles
reconfiguration cases
» Deployment concerns?
Leases: servers would ignore RequestVotes for a base
election timeout period after receiving a heartbeat
» Trivial implementation
» Fragile: If any single server doesn't ignore the

RequestVote, cluster will be disrupted
(clock drift, overload, packet loss)

» Not easy to evaluate concerns in simulator

20

Conclusions

ZooKeeper pre-vote very robust and easy to understand
» Other approaches: broken, subtle, not general, or
fragile
» Leverages existing properties: server won't be
disruptive unless it knows it is eligible
» They had this pre-vote phase before they had
reconfiguration?
Simulation nontrivial but paid off quickly
» Extremely valuable: being able to see detail at the
right level
distributions > individual timelines > full traces

» Real-time interactivity helpful
21

