
Leader Election
RAMCloud Lunch Talk

Diego Ongaro

December 12, 2013

1



Intro

I Leader election safety is easy

I Its performance/availability/liveness is hard to
reason about

I Flaky networks, down servers, partitions,
reconfiguration

I Very dynamic, state space explodes

I Had a known bug in reconfiguration, felt unsure of
potential solutions

I Built a simulator to understand better and
evaluate solutions

2



Current Algorithm (Basic)

I Servers may only vote once per term

I Server increments its term number when starting new
election

I Term numbers propagate across messages

I Start new election after random [100ms, 200ms] without
receiving heartbeat from current leader or granting vote

3



Current Algorithm (Up-To-Date Comparison)

I RequestVote RPC includes “length” of candidate’s
log (it’s slightly more complicated than that, but length will

work for this talk)

I A voter will not vote for a candidate with a shorter
log than its own

I ⇒ elected leader’s log is at least as up-to-date as
majority of cluster

I Used to ensure Raft’s safety properties

4



Normal Behavior (RAMCloud network)

I “RAMCloud”: 5-10 microsecond one-way network
latencies

I Works well, close to baseline (100ms) 5



Analytical Model

P(T < t) = 1− (1− t)s

P(T = t) = s(1− t)s−1

E [T ] =
1

s + 1 6



Normal Behavior (WAN network)

I “WAN”: 10-20 millisecond one-way network
latencies

I ∼6% of elections a bit slower, why? 7



Analytical Model (2 candidates)

I Two concurrent candidates very frequent with WAN latency

I But two concurrent candidates ok, 1 can still get majority

I Difference has same distribution as earliest timeout?
8



Pseudo-Analytical Model (3 candidates)

I Three concurrent candidates 8% with 10ms latency

I What’s this distribution?

9



Bad Receive

I Server 1 can send but can’t receive messages
I Doesn’t get heartbeats, disrupts leaders
I Somewhat Byzantine, but similar issue occurs

when servers are removed from the cluster 10



Stale-Log-No-Bump Algorithm

I Voter won’t adopt candidate’s term unless
candidate’s log is as up-to-date as voter’s

I Idea: ignore RequestVotes from ineligible
candidates

I Awkward: terms not quite logical clock anymore

11



Different Log Lengths (Distribution)

I Every server has a different log length ⇒ only 3
servers eligible to be leader

I Still acceptable, but what’s going on? 12



Different Log Lengths (Timeline)

I Server 1: log length 1 . . . Server 5: log length 5
I Ineligible servers tie up votes
I Eligible servers need to time out another time to

increment their terms 13



Reconfiguration

I Reconfigure from S1-S5 to S2-S6

I Log lengths: S1:1, S2:1, S3:3, S4:3, S5:2, S6:1

I S1 disrupts S2, in turn disrupts S4

I Key problem: hard to bound time leader needs to update servers’ logs

I Also fails for Bad Receive case when bad server has stale log 14



ZooKeeper Algorithm

I Pre-vote phase: before incrementing term, check
to make sure your log is at least as up-to-date as a
majority

I Works really well in all cases

I Decrease in performance on WAN?

I Large implementation change

15



Hesitant Algorithm

I Idea: Why do ZooKeeper’s pre-vote phase all the
time when most of the time we don’t need it?

I Candidate only restarts new election in next term if
a majority of voters say the candidate’s log is at
least as up-to-date as theirs

I Depends on property that if servers A’s log is less
up-to-date than server B, it remains that way until
server A’s log changes (not 100% true but
probably true enough)

I Works well for Bad Receive case, reconfiguration
with 1 server removed

16



Reconfiguration (2 servers)

I Reconfigure from S1-S5 to S3-S7

I Log lengths: S1:1, S2:2, S3:1, S4:3, S5:3, S6:1, S7:3

I S2 disrupts cluster, then learns not to, then S1 makes S2
return to follower state

I Key problem: S2’s amnesia 17



Persistent-Hesitant Algorithm

I What if servers remembered across terms that
their logs were less up-to-date than others?

I Any way this is better than ZooKeeper
(understandability)?

18



Reconfiguration (2 servers)

I Works ok
I Extra time needed for S1, S2 to collect rejections

19



Approaches Outside the Model
Multicast: send heartbeats on a well-known multicast
address

I Won’t fix Bad Receive alone, but handles
reconfiguration cases

I Deployment concerns?

Leases: servers would ignore RequestVotes for a base
election timeout period after receiving a heartbeat

I Trivial implementation
I Fragile: If any single server doesn’t ignore the

RequestVote, cluster will be disrupted
(clock drift, overload, packet loss)

I Not easy to evaluate concerns in simulator
20



Conclusions
ZooKeeper pre-vote very robust and easy to understand

I Other approaches: broken, subtle, not general, or
fragile

I Leverages existing properties: server won’t be
disruptive unless it knows it is eligible

I They had this pre-vote phase before they had
reconfiguration?

Simulation nontrivial but paid off quickly
I Extremely valuable: being able to see detail at the

right level
distributions > individual timelines > full traces

I Real-time interactivity helpful
21


