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Figure 8.9: Performance of HyperDex, RAMCloud, and Redis under the YCSB workloads described in
Table 8.2. Values on the y-axis are the aggregate average throughputs of all 12 YCSB clients. HyperDex
and Redis were run using kernel-level sockets over Infiniband. The “RAMCloud 75%” and “RAMCloud
90%” bars represent RAMCloud running with kernel-level sockets over Infiniband at 75% and 90% memory
utilisation, respectively (each server’s share of the 10 million total records corresponded to 75% or 90% of log
memory). The “RAMCloud 75% Verbs” and “RAMCloud 90% Verbs” bars depict RAMCloud running with
its “kernel bypass” user-level Infiniband transport layer, which uses reliably-connected queue pairs via the
Infiniband “Verbs” API. Each data point is the average of 3 runs, with error bars for minimum and maximum
values.
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Figure 8.5: Data from Figure 8.4 plotted with a log-log cumulative distribution of client write latencies
greater than x microseconds. For example, all accesses took longer than 14.4µs, and 2% of them took longer
than 23µs. The 99.9th, 99.99th, and 99.999th percentiles are 115, 130, 216µs and 935, 1448, 1624µs for the
“No cleaner” and “Cleaner” cases, respectively.

When objects are small (100 bytes) the differential between replicated and unreplicated is only about
30 to 60% for two reasons. First, when utilisations are low, the replicated cases are limited not by backup
bandwidth, but by backup latency (at 30% utilisation, about 25% of the per-object write latency is due to
backups, which accounts for most of the differential). Second, at higher utilisation (90%) with replication the
cleaner bottlenecks on CPU throughput; more cores are needed to clean segments. With larger objects the
differential is greater because cleaning is more efficient and replicated performance is bottlenecked primarily
on backup bandwidth.

Without replication there are two bottlenecks. As mentioned, in the 100-byte case the cleaner eventually
runs out of threads to do the work needed. This is also true for 1,000-byte objects. However, in the 10,000-
byte cases, the system is limited instead by memory bandwidth. The X3470 systems used have a theoretical
maximum 12.8 GB/s of memory bandwidth, and I measured maximum read throughput at about 11 GB/s and
write bandwidth at 5 GB/s with lmbench [33].

I monitored performance counters on the servers’ memory controllers during the 90% 10,000-byte exper-
iments and found that about 9.1 GB/s were being read and written (about 53% reads). This is over 80% of the
empirically-measured bandwidth and about 86% of the maximum write bandwidth. About 5 GB/s of band-
width can be attributed to the cleaner copying live log entries, and another 2-3 GB/s, depending on whether
the access pattern was Zipfian or Uniform, can be attributed to the network card DMAing write requests into
memory, reading those objects, and appending them to the log.
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Figure 8.1: End-to-end client write performance
as a function of memory utilization. For some ex-
periments two-level cleaning was disabled, so only
the combined cleaner was used. The “Single Client”
curve used two-level cleaning and uniform access
patterns with a single outstanding write request at a
time. All other curves used the high-stress work-
load with concurrent multi-writes. Each point rep-
resents the average of three runs on different groups
of servers.
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Figure 8.2: Cleaner bandwidth overhead (ratio of
cleaner bandwidth to regular log write bandwidth) for
the workloads in Figure 8.1. A ratio of 1 means that
for every byte of new data written to backups, the
cleaner writes 1 byte of live data to backups while
freeing segment space. The optimal ratio is 0.
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Figure 3.1: Total memory needed by allocators to store 10 GB of live data under the changing workloads
described in Table 3.1 (average of 5 runs). “Live” indicates the amount of live data, and represents an optimal
result. “glibc” is the allocator typically used by C and C++ applications on Linux. “Hoard” [9], “jemal-
loc” [23], and “tcmalloc” [2] are non-copying allocators designed for speed and multiprocessor scalability.
“Memcached” is the slab-based allocator used in the memcached [3] object caching system. “Java” is the
JVM’s default parallel scavenging collector with no maximum heap size restriction (it ran out of memory
if given less than 16GB of total space). “Boehm GC” is a non-copying garbage collector for C and C++.
Hoard could not complete the W8 workload (it overburdened the kernel by mmaping each large allocation
separately).

3.2 Why Not Use Malloc?

An off-the-shelf memory allocator such as the C library’s malloc function might seem like a natural choice
for an in-memory storage system. However, existing allocators are not able to use memory efficiently, partic-
ularly in the face of changing access patterns. We measured a variety of allocators under synthetic workloads
and found that all of them waste at least 50% of memory under conditions that seem plausible for a storage
system.

Memory allocators fall into two general classes: non-copying allocators and copying allocators. Non-
copying allocators such as malloc cannot move an object once it has been allocated, so they are vulnerable
to fragmentation. Non-copying allocators work well for individual applications with a consistent distribution
of object sizes, but Figure 3.1 shows that they can easily waste half of memory when allocation patterns
change. For example, every allocator we measured performed poorly when 10 GB of small objects were
mostly deleted, then replaced with 10 GB of much larger objects.

Changes in size distributions may be rare in individual applications, but they are more common in storage
systems that serve many applications over a long period of time. Such shifts can be caused by changes in the
set of applications using the system (adding new ones and/or removing old ones), by changes in application
phases (switching from map to reduce), or by application upgrades that increase the size of common records
(to include additional fields for new features). For example, workload W2 in Figure 3.1 models the case
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Figure 8.8: Client performance in RAMCloud under the same workloads as in Figure 3.1 from Section 3.2.
Each bar measures the performance of a workload (with cleaning enabled) relative to the performance of the
same workload with cleaning disabled. Higher is better and 1.0 is optimal; it means that the cleaner has no
impact on the processing of normal requests. As in Figure 3.1, 100GB of allocations were made and at most
10GB of data was alive at once. The 70%, 80%, and 90% utilization bars were measured with the high-
stress request pattern using concurrent multi-writes. The “Single Client” bars used a single outstanding write
request at a time; the data size was scaled down by a factor of 10x for these experiments to make running
times manageable. Each bar is the average of 3 runs.

these experiments the master was a Xeon E5-2670 system with 384 GB of DRAM running Linux 2.6.32.
We expected these workloads to exhibit performance similar to the workloads in Figure 8.1 (i.e. we

expected the performance to be determined by the object sizes and access patterns; workload changes per se
should have no impact). Figure 8.8 confirms this hypothesis: with the high-stress request pattern, performance
degradation due to cleaning was 10-20% at 70% utilization and 45-65% at 90% utilization. With the more
representative “Single Client” request pattern, performance degradation was less than 10% even at 90%
utilization.

8.3 Realistic YCSB Benchmarks and Comparison to Other Systems

I used the Yahoo! Cloud Storage Benchmark (YCSB) [19] to evaluate the performance of RAMCloud under
more realistic workloads, as well as to compare it against other storage systems. Two other modern storage
systems were also benchmarked: Redis [4], a popular open-source in-memory store and HyperDex [22],
a disk-based system that focuses on high performance and a rich data model with strong durability and
consistency guarantees.

YCSB is a framework that generates a variety of access patterns designed to mimic typical real world
applications in use at Yahoo! and other web companies. The benchmarks I ran used the pre-defined workloads

RAMCloud Overview Pervasive Log Structure 

Parallel Cleaning: Minimizing Latency Impact Two-Level Cleaning: Reducing I/O Overhead 

Generality of Log-structured Memory 

High Write Performance, Low I/O Overhead 

High Memory Efficiency, Low Latency Impact Higher Performance / Better Durability 

DRAM is expensive. How can we use it efficiently? 
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Figure 8.4: Cumulative distribution of client write latencies when a single client issues back-to-back write
requests for 100-byte objects using the uniform distribution. For example, about 85% of all write requests
completed in 17.5µs or less. The “No cleaner” curve was measured with cleaning disabled. The “Cleaner”
curve shows write latencies at 90% memory utilization with cleaning enabled. The median latency with
cleaning enabled was about 350ns higher than without a cleaner. Each curve contains hundreds of millions
of samples from multiple runs across different sets of identical nodes. Figure 8.5 more closely examines the
tail of this distribution.

than the workload with locality. As the scale of the system increases, the benefits of randomness should
increase.

8.1.5 Can Cleaning Costs be Hidden?

One of the goals for RAMCloud’s implementation of log-structured memory was to hide the cleaning costs so
they don’t affect client requests. Figure 8.4 graphs the latency of client write requests in normal operation with
a cleaner running, and also in a special setup where the cleaner was disabled. The cumulative distributions
are nearly identical: cleaning added about 500ns to the median latency, or about 3%. We hypothesize that the
increased latency is due to cache and memory bandwidth interference from the cleaner: at 90% utilization the
segment compactor is running continuously, modifying hash table entries and accessing shared locks while
processing nearly 4 million objects and tombstones per second.

8.1.6 Performance Without Replication

Figure 8.6 compares the performance of two-level cleaning with and without replication. This demonstrates
the maximum possible write throughput of the system and highlights the potential of RAMCloud’s cleaner
when not restricted by backup disk and network I/O.
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Figure 8.11: Comparison of cache miss rates under a changing access pattern. The “Slab” and “Log”
lines represent the regular memcached and log-based memcached miss rates, respectively. The “Slab + Fast
Rebalancer” line represents the slab allocator with artificial restrictions removed (the original memcached
code will move at most one slab every ten seconds). The “LRU Simulator” line represents an optimal miss
rate calculated by a simulator that uses a global LRU eviction policy and assumes a 48-byte item header for
each object and no memory lost to fragmentation. Each line is the average of 5 runs and consists of 2000
samples.

Allocator Average Throughput (writes/sec x1000) % CPU in Cleaning/Rebalancing
Slab 259.9 ± 0.6 0%
Log 268.0 ± 0.6 5.37 ± 0.3 %

Table 8.4: Average throughput and percentage of CPU used for cleaning or rebalancing. Log-structured
memory imposed no performance penalty and the cleaner contributed to only a small fraction of the process’
CPU use. Results were averaged over 5 runs.

to handle the workload change. However, the log-based server still maintains about a 2% lower cache miss
rate, primarily because it wastes less memory and can store more objects.

CPU Overhead of Cleaning

The final experiment addressed the question of whether cleaning adds significant overhead that could degrade
write throughput under heavy load. For this test the same Zipfian workload was used as in the memory
efficiency experiment: 100 million writes, Zipfian-distributed sizes from 0 to 8 KB and Zipfian-distributed
key popularity. This unrealistic workload was designed to maximally stress the servers’ write path. Table 8.4
compares the total client write throughput of the original and log-based servers, as well as the percentage of
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Allocator Fixed 25-byte Zipfian 0 - 8 KB
Slab 8737 982
Log 11411 1125

Improvement 30.6% 14.6%
Table 8.3: Average number of objects stored per megabyte of cache. The log allocator can store nearly 31%
more small objects due to reductions in per-object metadata, even when there is very little internal fragmenta-
tion in the slab allocator (the 25-byte objects fit perfectly in the 96-byte slab class). Zipfian-distributed object
sizes nearly 15% more objects can be stored due to the lack of internal fragmentation. Results were averaged
over 5 runs.

Table 8.3 shows the improvement in memory efficiency that the cleaner approach provides over the default
slab allocator. Nearly 31% more small fixed-sized objects and 15% more Zipfian-sized objects can be stored
using the log approach. In the fixed object case, this savings is due entirely to reductions in the item header
(objects are exactly 96 bytes in the slab allocator case and fit perfectly in the first slab class, so there is
no internal fragmentation). The improvement is slightly less than the expected 33% (96/72) due to metadata
overheads in the log. The efficiency improvement in the variably-sized object case is due primarily to avoiding
internal fragmentation, rather than header space reductions. For example, an 800-byte object fits imperfectly
into the 944-byte slab class it would be allocated from. Memcached can be tuned to increase the number
of slab classes and therefore reduce internal fragmentation, but this comes at a trade-off: the more slab
classes there are, the more sensitive the system will be to changing size distributions, which results in more
rebalancing.

Susceptibility to Changing Access Patterns

Next I compared the miss rates of the original memcached and log-based servers across a changing access
pattern. A workload of 200 million operations across a potential set of 100 million objects was generated.
Keys were accessed according to a Zipfian distribution, and 95% of accesses were reads while the other 5%
were writes. Like the previous experiment, each object initially consisted of a 23-byte key and 25 bytes of
data. However, after the first 100 million operations, the object data size was increased to 50 bytes. At this
point, any read returning a 25-byte object was considered a cache miss and the client would attempt to replace
it with the new 50-byte version.

Figure 8.11 shows that the log-based approach adapts to the workload change better than the slab rebal-
ancer. The experiment begins with an empty cache, so miss rates are initially high. The depicted miss rate is
always less than 100% because each data point is averaged over 100,000 requests (approximately 300 ms).
All servers converge to between 26 and 32% misses before the workload changes, causing the rate to spike.
The original memcached slab allocator fails to adapt quickly because the rebalancer is hard-coded to move
at most one slab every ten seconds. Its miss rate remains high because the rebalancer limits the number of
larger objects that can be stored. Removing this artificial limitation greatly improves the rebalancer’s ability
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Figure 8.10: Memory management in memcached. 1 MB contiguous slabs of memory are allocated to
individual slab classes, each of which subdivides its slabs into fixed-sized pieces that are used to allocate
space for individual objects. Slab classes consist mainly of a free list of deleted objects and an LRU list of
live objects, which is used to evict cold objects if the free list is empty. Slabs are never freed once allocated to
a slab class. However, they may occasionally move between classes if the slab rebalancer is enabled (moving
a slab necessitates evicting all objects stored in it first). A hash table indexes all live objects by user-specified
string keys.

the previous one. When memory is requested from the allocator, only the smallest slab class that could fit the
request is used. If the appropriate class has no free chunks, it attempts to allocate another slab to chop up and
repopulate its free list. If there are no more slabs available, then it tries to evict an object from its LRU list.
Memory allocation only fails if there are no objects to evict and no free slabs to allocate. Allocations are not
attempted in larger slab classes to avoid internal fragmentation.

There are two problems with this design that log-structured memory overcomes. First, the per-object
overhead is high: the item structure, which precedes each object stored in memory is 48 bytes. Some of this
space is important object metadata, but much of it consists of fields used by the allocator even when not on
a free list (for example, LRU list pointers and the identify of the slab class the object was allocated from).
As observed by Fan et al [24], shrinking this structure can greatly increase the number of small objects each
server can store, and may correspondingly improve cache hit rates.

The second problem is fragmentation: workload changes can cause the slab allocator to fail to satisfy
allocations because there are no objects of the desired size to evict [34]. For example, if a memcached server
is out of memory and a workload change results in new objects that fit into an empty slab class, then the
server will fail to allocate space for them because there are no free slabs and nothing available to LRU. To
address this, both the open source and Facebook internal versions of memcached have implemented “slab

To show that log-structured 
memory can be applied beyond 
RAMCloud, we replaced 
memcached 1.4.15’s slab 
allocator (left) with RAMCloud’s 
log and cleaner. 

Result: 
•  Up to 31% more space efficient 
•  No loss in write throughput 
•  Very low CPU overhead 

•  High performance, even at high memory utilization 
•  Cleaning I/O overheads reduced up to 87x 

Average number of objects stored per MB of cache 

Maximum Write Throughput and Cleaner Overhead 
•  RAMCloud provides better durability than Redis, higher read 

throughput, and similar write throughput. 
•  RAMCloud is better than HyperDex in all workloads with 

similar durability. 
Cleaning has a small impact on write latency (adds 350ns to the median 
time for a small 100B write operation). 

RAMCloud can run at very 
high memory utilization with 
good performance, even under 
changing workloads. 
 
Users choose how to trade 
performance for mem efficiency. 

•  Current memory allocators are unstable when the distribution of 
allocation sizes changes. 

•  Even copying garbage collectors that defragment memory are not 
designed to use that memory efficiently. 

•  RAMCloud needs a new memory management scheme that makes 
more efficient use of expensive DRAM. 

Total memory used under synthetic changing allocation patterns. Only 10GB of live data is allocated. 
•  RAMCloud is a datacenter storage system focusing on: 

•  Large Scale: 1,000 – 10,000+ servers 
•  Low-latency: 5 – 10 microseconds per RPC across the datacenter 

•  Goal: Enable novel applications with 100 – 1,000x decrease in storage 
latency / increase in operations/second. 

•  All data stored in DRAM at all times. 
•  Data replicated to remote disks for durability 
•  Currently implements a simple key-value data model 

•  Memory treated as a large contiguous array: a log structure 
•  New and updated objects appended to end of log, replicated 

for durability. Same log exists in memory as on remote backup disks. 
•  Log split into evenly-sized segments 
•  Scattered across backups, cleaned (defragmented) independently 

•  Hash table provides fast map from key to data in in-memory log 
•  Not persistent. Rebuilt from disk log during crash recovery 

•  Log structure provides: 
•  Memory efficiency: Trade off cleaning cost for memory utilization 
•  Performance: Large disk I/Os for high bandwidth 
•  Durability: Disk replication allows system to survive crashes 
•  Consistency: New data is written only to the head of the log 

•  When data is deleted, fragmented space accumulates in segments. 
•  Cleaning coalesces live data from old segments into survivor segments. 
•  Cleaned segments are then reused to store new data. 
•  RAMCloud’s cleaner defragments in parallel with normal operation 

for high performance and minimal disruption of service, including 
concurrent writes. 

•  Problem: When cleaning at high utilization, I/O overheads are large 
•  For example: if 90% of a segment has live data, cleaning it requires 

copying 9 bytes for every 1 byte freed. The survivor segment is sent 
over the network to multiple backup disks at significant I/O cost. 

•  Solution: Clean disk and memory independently, take advantage of 
their strengths and weaknesses: 
•  DRAM has high bandwidth to absorb overheads of running at high 

utilization. 
•  Disks have poor bandwidth, but much higher capacity. 

Segment compaction reclaims space in 
memory without changing segments on 
backups. 
 
Compaction delays cleaning on disk, so 
disk segments drop in utilization and are 
cheaper to clean. 


