Model Checking in RAMCloud

Diego Ongaro
2012-02-10

Why should we care?

« RAMCloud contains many protocols that are hard
to reason about

* Log entries: tombstones, cleaning, recovery
« Distributed protocols: tablet migration

* Finding log segments during recovery
« Model checking is like unit testing but for protocols

« Might catch some bugs
« Will definitely make you think more

* Helps to formalize complex invariants

Overview

* Define model checking
* Toy example: traffic light

« RAMCloud example: finding log segments
during recovery

 Discussion

What is model checking?

e You define:

o A set of variables (state)

o Starting values

* Rules for transitioning between states
 |Invariants

 The model checker (e.g., Murphi) will:

« Brute force to find all reachable states
 Ensure all invariants always hold

o Similar to NFAs
« Main challenge: state explosion

A toy example: traffic lights

» A protocol involving traffic lights and drivers
exists to avoid collisions

» Let's model an intersection with two one-way
streets and two traffic lights

 Assume the lights and drivers obey the protocol

 Show that no two cars will occupy the
intersection at once

State definition

° TWO I|ghts const

NUM_LIGHTS: 2;
e A |ight IS red or green MAX_CARS: 5;

» Set of cars type
Lightld: scalarset(NUM_LIGHTS);
® A car can be Carld: scalarset(MAX_CARS);

e/SGWhere, Waltlng at Car: record
a ||g ht or CI’OSSing at state: enum { ELSEWHERE, WAITING,

i CROSSING };
a Ilght light: Lightld;
" end;
* An array indexed by a
scalarset enables v |
symmetry reduction lights : array [Lightld] of enum { RED, GREEN };

cars : array [Carld] of Car;

Traffic light rules

« Start state: lights are red, cars are elsewhere

 Light transition rules

« If some light is red and the other is red, change it to green

 |If some light is green and there are no cars in the intersection,
change it to red

o Car transition rules

 If some car is elsewhere, change it to waiting at some light
 |f some car is waiting and the light is green, change it to crossing
 |If some car is crossing, change it to elsewhere

« Can you spot the bug? Murphi did (next slide)

Murphi's diagnosis

Invariant "No collisions" failed. . Rule light changes to green, I:Lightld_1 fired.
Startstate Startstate 0 fired. . lights[Lightld_1]:GREEN

. lights[Lightld_1]:RED . Rule car begins crossing, c:Carld_1 fired.

. Iights[LightId_Z]:RED . cars[Carld_1].state:CROSSING

cars[Carld_1].state:ELSEWHERE . Rule car begins crossing, c:Carld_2 fired.

cars[Carld_1].light:Undefined . I-I'-h:tlaf't it:;‘;e ffg‘;é;ze (in full) is:
. cars[Carld_2].state:ELSEWHERE - lights[Lightld_1]:

, : lights[Lightld_2]:RED
« cars[Carld_2].light:Undefined

_ _ _ cars[Carld_1].state:CROSSING
Rule car arrives at some light, I:Lightld_1, cars[Carld_1]light:Lightld_1

c:Carld_1 fired.
— . cars[Carld_2].state:CROSSING
. cars[Carld_1].state:WAITING cars[Carld_2] light:Lightld_1

. cars[Carld_1].light:Lightld_1

Rule car arrives at some light, |:Lightld_1,
c:Carld_2 fired.

« cars[Carld_2].state:WAITING
« cars[Carld_2].light:Lightld_1

Workflow

ldentify the protocol you're targeting
Think through simplifying assumptions

Distill the state variables to the very essentials
Write your invariants and rules

Plan to spend most of your time refactoring
Run the model checker

Extract your invariants and algorithms from
code into plain English

Finding log segments during
recovery: problem statement

 Each RAMCloud master replicates segments of
its log across the entire cluster

 When a master crashes, the coordinator must
find at least one copy of every segment replica
that made up the master's log (recoverability)

* |t must also ignore segment replicas that are no
longer part of the master's log (freed by the
cleaner or stale due to backup partitioning)

Ned to find the head segment

« Store a log digest in each segment, listing
every segment that is currently in the log

* Only the log digest in the head segment is valid

e So if we can find a replica of the master's head
segment, we can find the exact set of segments
that make up the log

How do we find the head segment?

* Open before close protocol on segments
e Durably open new head segment
e Durably close old head segment
* Begin writing to new head segment

* During recovery, if there are two open
segments, it doesn't matter which one is used.

Problem #1: Initialization

Problem #2: Backup failures

Simplifying assumptions

 Each master's log is independent

* \We don't need to model backups; each replica
can be stored independently

 Assume RPCs are asynchronous but atomic
 We don't need 8 MB segments
* \WWe shouldn't model the cleaner right away

 So we don't need to model log digests
* Model failures to maintain recoverability

Invariant

* Given an adversarial set of replicas to use in
recovery, the log recovered contains exactly:

* the objects durably written by the master

» optionally, any objects the master was in the
process of writing

e Adversarial set:

* For each segment, use its shortest replica

« Stop at the earliest replica that looks like a head
segment

State

« The log:

« An array of segments, indexed by segment ID
« A ready boolean, indicating whether the master may have tablets assigned to it

« minValidOpenSegment: During recovery, all open segment replicas with
segment IDs below this number are ignored.

« Each segment
« May be invalid, open, or closed
« Has a length
« Has a set of replicas
« Each replica:
« May be invalid, open, or closed
« Has a length
« May be partitioned (unavailable for replication)

Rules

. Start state: empty log, no replicas

. Writing to the log

. If the log is ready, the head segment has room and is durable, and the previous segment has
been durably closed: increase the length of the head segment.

. If the current segment is full: mark it closed and mark the next segment open.
. Replication

. If a segment needs replication, one of its available replicas is out of date, and the segment is
open or the next segment is durably open: update the replica.

. If a segment needs replication, needs a new replica to achieve this, and the segment is open
or the next segment is durably open: create a new, up-to-date replica.

. Partitioning a replica (backup failures)

. If a replica is open and not partitioned: partition it. If the segment is open, mark the segment
closed, mark the next segment open, and set the backup recovery flag.

. If the backup recovery flag is set, the head segment is durably open, and all previous
segments are durably closed: set the minValidOpenSegmentld to the head.

Why won't this catch every bug?

* Your simplifying assumptions might hide bugs
* Your model might be buggy

* Tip: run with -pr flag for a count of how many times
each rule fires

* Your invariants might not be strong enough
* Your model might be too small
 The model checker might be buggy

* Murphi is basically unmaintained

Early lessons

Focus on what you're trying to show
Keep variables small

o 2"(number of bits of state) is an upper bound on the
number of states

Take advantage of symmetry reduction
Models tend to terminate quickly or never

Murphi gotchas:

« Syntactically picky
 Need to loop around dead ends to the start state

Summary & next steps

Model checking is like unit testing but for protocols
Helps to formalize complex invariants

Will scale to non-trivial examples

Next steps:

« Converge this model and ReplicaManager

* Model other parts of RAMCloud

- Log entries: tombstones, cleaning, recovery
- Distributed protocols: tablet migration

 Look into other model checkers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

