

Model Checking in RAMCloud

Diego Ongaro
2012-02-10

Why should we care?

● RAMCloud contains many protocols that are hard
to reason about
● Log entries: tombstones, cleaning, recovery
● Distributed protocols: tablet migration
● Finding log segments during recovery

● Model checking is like unit testing but for protocols
● Might catch some bugs
● Will definitely make you think more

● Helps to formalize complex invariants

Overview

● Define model checking
● Toy example: traffic light
● RAMCloud example: finding log segments

during recovery
● Discussion

What is model checking?

● You define:
● A set of variables (state)
● Starting values
● Rules for transitioning between states
● Invariants

● The model checker (e.g., Murphi) will:
● Brute force to find all reachable states
● Ensure all invariants always hold

● Similar to NFAs
● Main challenge: state explosion

A toy example: traffic lights

● A protocol involving traffic lights and drivers
exists to avoid collisions

● Let's model an intersection with two one-way
streets and two traffic lights

● Assume the lights and drivers obey the protocol
● Show that no two cars will occupy the

intersection at once

State definition

● Two lights
● A light is red or green

● Set of cars
● A car can be

elsewhere, waiting at
a light, or crossing at
a light

● An array indexed by a
scalarset enables
symmetry reduction

const

 NUM_LIGHTS: 2;

 MAX_CARS: 5;

type

 LightId: scalarset(NUM_LIGHTS);

 CarId: scalarset(MAX_CARS);

 Car: record

 state: enum { ELSEWHERE, WAITING,

 CROSSING };

 light: LightId;

 end;

var

 lights : array [LightId] of enum { RED, GREEN };

 cars : array [CarId] of Car;

Traffic light rules

● Start state: lights are red, cars are elsewhere

● Light transition rules
● If some light is red and the other is red, change it to green
● If some light is green and there are no cars in the intersection,

change it to red

● Car transition rules
● If some car is elsewhere, change it to waiting at some light
● If some car is waiting and the light is green, change it to crossing
● If some car is crossing, change it to elsewhere

● Can you spot the bug? Murphi did (next slide)

● Invariant "No collisions" failed.

● Startstate Startstate 0 fired.

● lights[LightId_1]:RED

● lights[LightId_2]:RED

● cars[CarId_1].state:ELSEWHERE

● cars[CarId_1].light:Undefined

● cars[CarId_2].state:ELSEWHERE

● cars[CarId_2].light:Undefined

● Rule car arrives at some light, l:LightId_1,
c:CarId_1 fired.

● cars[CarId_1].state:WAITING

● cars[CarId_1].light:LightId_1

● Rule car arrives at some light, l:LightId_1,
c:CarId_2 fired.

● cars[CarId_2].state:WAITING

● cars[CarId_2].light:LightId_1

Murphi's diagnosis

● Rule light changes to green, l:LightId_1 fired.

● lights[LightId_1]:GREEN

● Rule car begins crossing, c:CarId_1 fired.

● cars[CarId_1].state:CROSSING

● Rule car begins crossing, c:CarId_2 fired.

● The last state of the trace (in full) is:

● lights[LightId_1]:GREEN

● lights[LightId_2]:RED

● cars[CarId_1].state:CROSSING

● cars[CarId_1].light:LightId_1

● cars[CarId_2].state:CROSSING

● cars[CarId_2].light:LightId_1

Workflow

● Identify the protocol you're targeting
● Think through simplifying assumptions
● Distill the state variables to the very essentials
● Write your invariants and rules
● Plan to spend most of your time refactoring
● Run the model checker
● Extract your invariants and algorithms from

code into plain English

Finding log segments during
recovery: problem statement

● Each RAMCloud master replicates segments of
its log across the entire cluster

● When a master crashes, the coordinator must
find at least one copy of every segment replica
that made up the master's log (recoverability)

● It must also ignore segment replicas that are no
longer part of the master's log (freed by the
cleaner or stale due to backup partitioning)

Ned to find the head segment

● Store a log digest in each segment, listing
every segment that is currently in the log

● Only the log digest in the head segment is valid
● So if we can find a replica of the master's head

segment, we can find the exact set of segments
that make up the log

How do we find the head segment?

● Open before close protocol on segments
● Durably open new head segment
● Durably close old head segment
● Begin writing to new head segment

● During recovery, if there are two open
segments, it doesn't matter which one is used.

Problem #1: Initialization

Problem #2: Backup failures

Simplifying assumptions

● Each master's log is independent
● We don't need to model backups; each replica

can be stored independently
● Assume RPCs are asynchronous but atomic
● We don't need 8 MB segments
● We shouldn't model the cleaner right away

● So we don't need to model log digests

● Model failures to maintain recoverability

Invariant

● Given an adversarial set of replicas to use in
recovery, the log recovered contains exactly:
● the objects durably written by the master
● optionally, any objects the master was in the

process of writing

● Adversarial set:
● For each segment, use its shortest replica
● Stop at the earliest replica that looks like a head

segment

State

● The log:
● An array of segments, indexed by segment ID

● A ready boolean, indicating whether the master may have tablets assigned to it

● minValidOpenSegment: During recovery, all open segment replicas with
segment IDs below this number are ignored.

● Each segment
● May be invalid, open, or closed

● Has a length

● Has a set of replicas

● Each replica:
● May be invalid, open, or closed

● Has a length

● May be partitioned (unavailable for replication)

Rules

● Start state: empty log, no replicas

● Writing to the log
● If the log is ready, the head segment has room and is durable, and the previous segment has

been durably closed: increase the length of the head segment.

● If the current segment is full: mark it closed and mark the next segment open.

● Replication
● If a segment needs replication, one of its available replicas is out of date, and the segment is

open or the next segment is durably open: update the replica.

● If a segment needs replication, needs a new replica to achieve this, and the segment is open
or the next segment is durably open: create a new, up-to-date replica.

● Partitioning a replica (backup failures)
● If a replica is open and not partitioned: partition it. If the segment is open, mark the segment

closed, mark the next segment open, and set the backup recovery flag.

● If the backup recovery flag is set, the head segment is durably open, and all previous
segments are durably closed: set the minValidOpenSegmentId to the head.

Why won't this catch every bug?

● Your simplifying assumptions might hide bugs
● Your model might be buggy

● Tip: run with -pr flag for a count of how many times
each rule fires

● Your invariants might not be strong enough
● Your model might be too small
● The model checker might be buggy

● Murphi is basically unmaintained

Early lessons

● Focus on what you're trying to show
● Keep variables small

● 2^(number of bits of state) is an upper bound on the
number of states

● Take advantage of symmetry reduction
● Models tend to terminate quickly or never
● Murphi gotchas:

● Syntactically picky
● Need to loop around dead ends to the start state

Summary & next steps

● Model checking is like unit testing but for protocols
● Helps to formalize complex invariants
● Will scale to non-trivial examples
● Next steps:

● Converge this model and ReplicaManager
● Model other parts of RAMCloud

– Log entries: tombstones, cleaning, recovery
– Distributed protocols: tablet migration

● Look into other model checkers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

