
Consensus:
Bridging Theory and Practice

Thesis Proposal

Diego Ongaro

June 14, 2013

1

While working on RAMCloud, quickly found that
building correct fault-tolerant systems is hard

I Building blocks not obvious (which and how?)
Consensus is necessary for consistent systems

I Fundamental, well-defined problem

1. Consensus algorithms are not widely understood by
systems-builders

2. Many details needed to build a complete replicated
state machine are missing or unprincipled

3. Few implementations of consensus are available,
complete, reliable, maintainable, and usable

4. Where to apply consensus is not widely understood
by systems-builders

2

Outline

Current status / existing work

Plan

Future work

3

Current status
I Raft consensus algorithm

I Implementation (nearly) done
I Formal spec in TLA+, English proof of safety

I Reconfiguration
I Implementation (nearly) done

I Log compaction
I Implementation in progress (snapshotting)

I User study
I Demonstrated Raft easier to learn than Paxos

I Implementation artifacts
I Raft embedded as part of LogCabin
I LogCabin’s data model still in flux
I Only unit tests

4

Context: replicated state machines

Server

Log

State Machine
Consensus
Module

Client

add mov ret ...

2

1

3

2

4

I State machine defines data structure
I Interface is application-specific

I Replicated log feeds commands to state machine
I Same log ⇒ same sequence of states, outputs
I Raft and Multi-Paxos are two consensus algorithms

to manage the replicated log
5

Raft overview

I Design for understandability
I Problem decomposition, state space reduction

I Strong leader
I Only leaders (and candidates) issue requests
I Servers never pull data

1. Leader election

2. Log replication

3. Safety

6

1. Leader election

CandidateFollower Leader

receives votes from
majority of servers

times out,
starts election

starts up

discovers server
with higher term

discovers current
leader or new term

step down

times out,
new election

I Each server may vote once per term
I Majority requirement ensures one leader per term
I Wait for next timeout in case of split vote
I Randomized timeouts (e.g., 150-300ms) for

liveness
7

2. Log replication
leader for
term 8

possible
followers

(a)

(c)

(b)

(e)

(d)

(f)

1 1 1 4 4 5 5 6 6 6

1 1 1 4 4 5 5 6 6

1 1 1 4

1 1 1 4 4 5 5 6 6 6 6

1 1 1 4 4 5 5 6 6 6 7 7

1 1 1 4 4 4 4

1 1 1 2 2 2 3 3 3 3 3

I Leader assumes its log is “the truth”
I Sends entries to followers
I Consistency check: follower rejects entry unless the

preceding entry’s term matches
I On reject, step back and try again
I Followers discard conflicting log suffixes

8

3. Safety

Leader election rigged:

I Server only grants vote if candidate’s log is at least
as current as its own, i.e., if

candidate’s (last log term, last log index) ≥ voter’s

A leader marks a log prefix committed when:

1. It is stored on a majority of servers, and

2. This leader created the last entry

Together, guarantees that every future leader has all
committed entries.

9

User study

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

R
af

t g
ra

de

Paxos grade

Raft then Paxos
Paxos then Raft

10

Reconfiguration (cluster membership changes)

I Leverage the log to order configuration changes

I Lamport’s approach (α) won’t work with strong
leadership

I Servers in new group need to be up-to-date to
become leader

I Raft’s approach: switch to a transitional
configuration, then to the new configuration

I Serial log operation enables concurrent client
requests (without limit)

11

Log compaction

I Need to compact log somehow (cleaning,
snapshotting, or write-ahead log)

I Despite strong leader, simplest approach is that
servers compact independently

I E.g., no need to worry about leader changes

I Snapshotting is sane for in-memory state machines
I 10× memory-sized log ⇒ 10% b/w overhead
I Recovery time mitigated by majority approach

I Leverage OS fork() to take consistent snapshot
without complicating state machine code

12

Related work

I Paxos
I Most popular consensus algorithm today
I Problem decomposition makes it less suitable

for understanding and systems-building

I Leader-based consensus algorithms: Viewstamped
Replication (Revisited) and Zab

I Raft is similar in structure but “sweeter” in
the details

I VR not implemented?; VRR partially
implemented; Zab built into ZooKeeper

13

Outline

Current status / existing work

Plan

Future work

14

Plan

Graduate June 2014

1. Finish implementing snapshotting

2. Address paper reviews

3. Extract libraft from LogCabin

4. Do system-level testing of libraft/LogCabin

Concurrently:

I Support growing user community

I Give more talks

I Write thesis

15

Thesis outline: Raft algorithm

1. Core Raft consensus algorithm
I Algorithm (main body of paper)
I Discussion of design choices

2. Cluster membership changes
I Basic algorithm and catch-up, etc
I Summary of and comparison with Lamport,

DM, Zab, ... approaches
3. Log compaction

I Discussion of solution space
I Description of algorithm used in LogCabin

4. Client interaction
I Providing linearizability
I How clients find the leader

16

Thesis outline: Raft algorithm (continued)

5. Raft user study
I Methodology, results, conclusions

6. Proof of core Raft algorithm
I Formal spec (TLA) and proof (English)

7. Related work: Paxos
I Detailed explanation of algorithm presented in

DM and John’s talks
I What’s wrong with Paxos

8. Related work: Leader-based
I Summary of original VR, changes in VR

Revisited, Zab
I What’s wrong with these

17

Thesis outline: Implementation

9. libraft: Raft library
I API
I Internals (threading model, etc.)
I Testing

10. LogCabin service
I Old API
I New API
I Experience from RAMCloud

11. 3rd-party Raft implementations
I Brief summary of the important ones and any

significant deviations in implementation

18

Outline

Current status / existing work

Plan

Future work

19

Randomized testing

Goal: increase confidence about:

I Basic Raft implementation

I Reconfiguration

I Snapshotting

I Writing to disk

Randomly kill, unplug, delay, reconfigure
Clients shouldn’t notice a thing

20

What should LogCabin’s data model be?

I Started as a log interface, got sucky
I Garbage collection annoying
I Ordering not desired

I Chubby, ZooKeeper provide:
I Random access to data (hierarchical KV store)
I Conditional writes
I Mutual exclusion (leases or ephemeral nodes)
I Notification mechanism (blocking or wait-free)
I Massive pipelining & stale reads (ZooKeeper)

I Important question but hard to evaluate

21

Where should consensus be used?

consensus

consensus or
primary-backup?

control/metadata:

data:

Consensus Primary-Backup
Reacts to failures autonomously Failures depend on external system

Needs 2f + 1 machines Needs f + 1 machines
Masks latency in minority Allows even numbers of machines

It seems large systems should use primary-backup for
data, but Megastore and Spanner use consensus?

22

Summary

I Bridging the gap between theory and practice for
consensus

I New consensus algorithm, user study showed easier
to understand than Paxos

I Working out details needed for a complete system

I Implementation progressing; need to expose as
library and service, do randomized system testing

I Some interesting open research questions

I Planning to graduate June 2014

23

	Current status / existing work
	Plan
	Future work

