Alex Mordkovich

Motivation: Durable WRITEs
Baseline system

RDMA system

Comparison

Exploring Infiniband latency

Motivation: Durable WRITEs

/

Client) Master

write

o g

Backups

Motivation: Durable WRITEs

Client

\

- 4 Master N
write
o J

Backups

Motivation: Durable WRITEs

4 Client A ; 4 Master)
write

—>

Master sends 3 RPCs to
replicate client WRITE
to backups' memory

Backups

Motivation: Durable WRITEs

4 Client A ‘ Master A
done
AN) A J
Master acknowledges |

WRITE to client once
all replication RPCs
complete Backiips

= End-to-end latency:

= ~|0 us to replicate to backups.

Baseline Replication: Timeline

0 us ——— Begin replication (100-byte object)
1.8 us --- Replication RPC #1 sent out
3.2 us --- Replication RPC #2 sent out
4.4 us --- Replication RPC #3 sent out

[3.8 us "dead time"]

8.2 us --- Replication RPC #1 completes (duration:
9.8 us --- Replication RPC #2 completes (duration:
10.7 us --- Replication RPC #3 completes (duration:
10.8 us --- End replication

Y time

6.4 us)
6.6 us)

6.3 us)

For each RPC:

Acquire coarse lock 300 ns
protecting transport layer
Talk to HCA to send 200 ns

Wiait for RPC to complete ~6.4 us (albeit pipelined)

Baseline Replication: Overheads

= For each RPC:;

Talk to HCA to send 200 ns
Wait for RPC to complete ~6.4 us (albeit pipelined)

Even though RPC framework system already quite
optimized, RPCs still big time sink.

Baseline Replication: Overheads

= For each RPC:;

Talk to HCA to send 200 ns
Wait for RPC to complete ~6.4 us (albeit pipelined)

Even though RPC framework system already quite
optimized, RPCs still big time sink.

Can we we write 100 bytes faster?

HCA on Host A writes to main memory on Host B

Bypass software stack on Host B
CPU on Host B not involved

From perspective of software on Host B, contents
just "appear” at memory location

rdmaWrite(localAddr, numBytes,

remoteKey, remoteAddr)

RDMA Replication

= Master just needs to copy data from its memory
directly into log in backup’'s memory at some
address

= Very conducive to RDMA
= Cleanly replace RPC code with RDMA

4.1 us to complete replication

0 us —-—— Begin replication (100 byte object)
1.0 us --- Replication RDMA #1 sent out
1.6 us --- Replication RDMA #2 sent out
2.2 us —--- Replication RDMA #3 sent out

[0.6 us "dead time"]
2.8 us —--- Replication RDMA #1 completes (duration: 1.8 us)
3.4 us --- Replication RDMA #2 completes (duration: 1.8 us)
3.9 us --- Replication RDMA #3 completes (duration: 1.7 us)
4.1 us --- End replication

* time

RDMA vs. Baseline

Mean end-to-end write latency vs. object size (3 backups)
45 e R T — R R e s v o

— Baseline

40|~ DBaseline| SRR 5
—— RDMA : : s : : | ; : :

35

[t ™ &)
o o o

-
L]

End-to-end write latency (us)

10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Object size (bytes)

End-to-end write latency (us)

RDMA vs. Baseline

Mean end-to-end write latency vs. object size (3 backups)

150 [~

-
=
=

o))
o

——Baseline
——RDMA |

! T [T I

G

..

! T | T T

£t

0 5,000 10,000

15,000 20,000 25,000 30,000

QObject size (bytes)

35,000 40,000 45,000 50,000

End-to-end client write latency vs. number of backups {128 byte object)
B0 S S e o o o o e

Baseline : 5 : 5 : : : :
...... RDMA _mm?mmmm?mmmﬁmmmm?mmmm?mmmﬁmmmm€mmmm€

[
o
I

...

M
=
|

—
=

End-to-end write latency (us)
o

0 1 2 3 4 D 6 7 8 9 10
Number of backups

Observed variance in latencies, especially on baseline
system.

Focused in on latencies for small (128-byte) objects...

End-to-end write latency (us)

307

25

I
o

—_
o

—_
o

End-to-end write latency (baseline, 128 bytes, 3 backups)

0

1000

2000

3000

4000 5000 6000
Sample number

7000

8000

9000

10000

To rule out RAMCloud-related effects, stripped
away RPC layer

Modified RAMCloud client/server to simply ping-
pong messages on top of Infiniband transport

No backups

Network and hosts otherwise quiesced

Default configuration

ramcloud.client.pingpong__ srq.depth.32__max.sge.08.dat

6

=

Ping pong latency (us)
N

0
9750 9800 9850 9900 9950 10000
Sample number

Wrote simple ping-pong program to explore effect
of Infiniband configurations.

Initially, program did not exhibit RAMCloud patterns.

Settings tested:

= Maximum number of SGE in a receive request

= Number of receive buffer registrations

To receive a message, need to post a receive request to a
receive queue.

A receive request can specify multiple scatter/gather entries.

When a receive queue is created, the maximum number of
SGE entries per (future) receive request is specified.

Both RAMCloud and simple program only actually use one
SGE per receive request.

N =32 max_sge = |

simple.client.pingpong___srq.ena___recvg.depth.32___num.recv.buf.reg.1__max.sge.1.dat

15

Ping pong latency (us)

9750 9800 9850 9900 9950 10000
Sample number

N =32 max_sge = 2 thru 3

simple.client.pingpong___srg.ena___recvq.depth.32___num.recv.buf.reg.1__max.sge.3.dat

1 8 T T T T

16f .

—_ —_ —_
- [\Y B
I I I
| | |

Ping pong latency (us)
Qo

9750 9300 93850 9900 93950 10000
Sample number

N =32 max_sge = 4 thru /7

simple.client.pingpong__srq.ena___recvq.depth.32__num.recv.buf.reg.1___max.sge.6.dat

—
o
T
|

—_
-
T
|

a
T
|

Ping pong latency (us)

9750 9800 9850 9900 9950 10000
Sample number

32 max_sge = 8 thru |5

simple.client.pingpong__srg.ena__recvq.depth.32__num.recv.bufreg.1__max.sge.12.dat

Ping pong latency (us)

9750 9800 9850 9900 9950 10000
Sample number

N =32 max_sge = |6

simple.client.pingpong___srq.ena__recvg.depth.32__num.recv.bufreg.1___max.sge.16.dat

—_
o
!
1

—_
o
!
1

Ping pong latency (us)
)

9750 9800 9850 93900 9950 10000
Sample number

(R o 1N

Mean ping pong latency (us)

Mean latency for simple client/server ping pong

10
max sde

15

Standard performance characteristics (3 replicas)

End-to-end test
readl0O0
readlK
readlOK
readlOOK
readlM
writelOO
writelK
writelOK
writelOOK
writelM

max_sge

5.5
7.1
10.4
46.7
429.8
14.9
18.9
37.4
244.2
2.4

8
us
us
us
us
us
us
us
us
us

ms

max_sge

4.9
6.6
9.9
46 .2
439.8
14.0
17.9
36.9
244.2
2.3

us

us

us

us

us

us

us

us

us

ms

