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Need a New Transport Protocol

RTT
5µs

RAMCloud
clean slate + scale out

60µs

SEDCL Networking
adapt existing protocols

Networking research isn’t solving our problems yet
I Hint: If you measure in milliseconds,

that’s not low latency.
I Hesitant to part ways with TCP

I We can experiment in the datacenter
I Not using the same assumptions
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Outline

1. Requirements and assumptions for
RAMCloud’s RPC System

2. RAMCloud’s transport interface:
a research platform

3. Key ideas from the FastTransport protocol

4. Results of a simple RPC benchmark
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RPC System Requirements

I Low latency (5-10µs)
I Small reads will dominate workload

I High throughput
I Larger objects (up to 1 MB)
I Recovery traffic (up to 8 MB)

I 10,000s of sessions per server

I RPC abstraction
I Easy to use
I Asynchronous interface for parallelism
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Transport Protocol Assumptions (1/2)

I RPCs
I Message length is known up front
I Response acknowledges request
I Utility in completed RPCs, not bytes sent
I Traditionally, streaming protocols

I Dedicate a core
I Poll for packets, TSC for timeouts
I No delays, fast retransmissions
I Traditionally, interrupts, clocks, syscalls

5



Transport Protocol Assumptions (2/2)
I Simple flow control

I Small windows fill the pipe
I End hosts have sufficient buffers
I Traditionally, long links and slow recipients

I Multipath fat tree topologies
I Full bisection bandwidth
I Must tolerate packet-level reordering
I Traditionally, single path with no reordering
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Pluggable Transports

TCP
Sockets

Transport

Infiniband
Reliable

Connected
Transport

UDP
Sockets
Driver

Infiniband
Unreliable

Driver

10 Gbps
Ethernet

Driver

Fast
Transport

Unreliable
Transport

RPC

Datacenter Network
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Fast Session Lookup

I 10,000s of sessions

I Lookup state when a
packet arrives

I Use hint as index into
session table

hint

(token, session)

I Use token to verify
hint is still valid

Client Server

session open requestclient session hint

session open response

server session hint

session token

packets

...
...
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Packet-Level Reordering

I In a multipath network, packets can arrive out of
order

I Challenging for TCP
I Cumulative ACKs
I ACK bytes, not packets
I Large receive windows with high delay links

I Addressed in TCP-SACK: list of byte ranges

I Simpler (faster) in FastTransport
I ACK on the packet level
I First fragment not yet received and

fixed size bit vector for remaining window
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Preliminary Results

I One client and one storage server

I Load 1 GB of random data into server

I For each of various object sizes:
Read random objects back-to-back

I Small object sizes show RPC latency

I Large object sizes show network utilization
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RPC Latency
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Network Throughput
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Weaknesses (Future Work)

I Don’t understand why TCP’s kernel crossings are
so slow

I Don’t understand our Ethernet driver’s variance

I FastTransport performance isn’t quite there yet

I Can’t predict behavior in larger networks
I Benchmark in slightly larger networks
I Simulate datacenter networks
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Conclusions

I We think we’ll need a new transport protocol

I We’re building a platform to experiment with
different transports

I FastTransport is usable in small clusters

I Future work will expand to larger networks
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