
RAMCloud’s RPC Protocol

Diego Ongaro

June 4, 2011

1

Need a New Transport Protocol

RTT
5µs

RAMCloud
clean slate + scale out

60µs

SEDCL Networking
adapt existing protocols

Networking research isn’t solving our problems yet
I Hint: If you measure in milliseconds,

that’s not low latency.
I Hesitant to part ways with TCP

I We can experiment in the datacenter
I Not using the same assumptions

2

Outline

1. Requirements and assumptions for
RAMCloud’s RPC System

2. RAMCloud’s transport interface:
a research platform

3. Key ideas from the FastTransport protocol

4. Results of a simple RPC benchmark

3

RPC System Requirements

I Low latency (5-10µs)
I Small reads will dominate workload

I High throughput
I Larger objects (up to 1 MB)
I Recovery traffic (up to 8 MB)

I 10,000s of sessions per server

I RPC abstraction
I Easy to use
I Asynchronous interface for parallelism

4

Transport Protocol Assumptions (1/2)

I RPCs
I Message length is known up front
I Response acknowledges request
I Utility in completed RPCs, not bytes sent
I Traditionally, streaming protocols

I Dedicate a core
I Poll for packets, TSC for timeouts
I No delays, fast retransmissions
I Traditionally, interrupts, clocks, syscalls

5

Transport Protocol Assumptions (2/2)
I Simple flow control

I Small windows fill the pipe
I End hosts have sufficient buffers
I Traditionally, long links and slow recipients

I Multipath fat tree topologies
I Full bisection bandwidth
I Must tolerate packet-level reordering
I Traditionally, single path with no reordering

6

Pluggable Transports

TCP
Sockets

Transport

Infiniband
Reliable

Connected
Transport

UDP
Sockets
Driver

Infiniband
Unreliable

Driver

10 Gbps
Ethernet

Driver

Fast
Transport

Unreliable
Transport

RPC

Datacenter Network
7

Fast Session Lookup

I 10,000s of sessions

I Lookup state when a
packet arrives

I Use hint as index into
session table

hint

(token, session)

I Use token to verify
hint is still valid

Client Server

session open requestclient session hint

session open response

server session hint

session token

packets

...
...

8

Packet-Level Reordering

I In a multipath network, packets can arrive out of
order

I Challenging for TCP
I Cumulative ACKs
I ACK bytes, not packets
I Large receive windows with high delay links

I Addressed in TCP-SACK: list of byte ranges

I Simpler (faster) in FastTransport
I ACK on the packet level
I First fragment not yet received and

fixed size bit vector for remaining window

9

Preliminary Results

I One client and one storage server

I Load 1 GB of random data into server

I For each of various object sizes:
Read random objects back-to-back

I Small object sizes show RPC latency

I Large object sizes show network utilization

10

RPC Latency

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 500 1000 1500 2000 2500 3000 3500 4000

R
TT

 (u
s)

Object Size (Bytes)

cloud+infeth
unreliable+infeth

cloud+infud
unreliable+infud

infrc
10 Gbps wire time

11

Network Throughput

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 200000 400000 600000 800000 1e+06

Th
ro

ug
hp

ut
 (M

B
/s

)

Object Size (Bytes)

infrc
tcp

unreliable+infud
cloud+infud

unreliable+infeth
cloud+infeth

12

Weaknesses (Future Work)

I Don’t understand why TCP’s kernel crossings are
so slow

I Don’t understand our Ethernet driver’s variance

I FastTransport performance isn’t quite there yet

I Can’t predict behavior in larger networks
I Benchmark in slightly larger networks
I Simulate datacenter networks

13

Conclusions

I We think we’ll need a new transport protocol

I We’re building a platform to experiment with
different transports

I FastTransport is usable in small clusters

I Future work will expand to larger networks

14

