
Memory and Object
Management in RAMCloud

Steve Rumble
December 3rd, 2013

RAMCloud Introduction

•  General-purpose datacenter storage system
•  All data in DRAM at all times
•  Pushing two boundaries:

–  Low Latency: 5 – 10µs roundtrip (small reads)
–  Large Scale: To 10,000 servers, ~1PB total memory

•  Goal:
–  Enable novel applications with 100 – 1,000x increase

in serial storage ops/sec
•  Problem:

–  How to store data while getting high performance,
high memory utilisation, and durability in a multi-
tenant environment?

2	

Thesis & Key Results
•  Structuring memory as a log allows DRAM-based

storage systems to achieve:
–  High allocation performance
–  High memory efficiency

•  Even under changing workloads

–  Durability

•  RAMCloud’s log-structured memory:
–  410k durable 100-byte writes/s using 90% of memory
–  2% median latency increase due to management
–  Applicable to other DRAM-based systems

3	

Contributions
•  Log-structured memory

–  High performance, high memory utilisation, durability
•  Two-level cleaning

–  Durability with low disk & network I/O overhead
•  Cost-Benefit Improvements

–  Improved heuristic for selecting segments to clean
•  Parallel cleaning

–  Fast memory allocation, overheads off critical path
•  Cleaner balancing

–  Policies for choosing how much of each cleaner to run

4	

Outline
•  RAMCloud Background
•  Motivation

–  Goals & problems with current memory managers
•  Contributions

–  Log-structured memory
–  Two-level Cleaning
–  Evaluation
–  Cost-Benefit Improvements

•  Conclusion
–  Related Work
–  Future Work
–  Acknowledgements
–  Summary

5	

Outline
Ø  RAMCloud Background
•  Motivation

–  Goals & problems with current memory managers
•  Contributions

–  Log-structured memory
–  Two-level Cleaning
–  Evaluation
–  Cost-Benefit Improvements

•  Conclusion
–  Related Work
–  Future Work
–  Acknowledgements
–  Summary

6	

Master	

Backup	

Master	

Backup	

…	

App	

Library	

App	

Library	

App	

Library	

App	

Library	

…	

Datacenter	

Network	
 Coordinator	

Up	
 to	
 10,000	
 Storage	
 Servers	

RAMCloud Architecture

7	

Up	
 to	
 100,000	
 Applica5on	
 Servers	

Master	

Backup	

Master	

Backup	

5µs	
 RTT	
 for	
 small	
 RPCs	

Full	
 bisecGon	
 bandwidth	

Key-­‐Value	
 Store	

100s	
 of	
 GB	
 of	
 DRAM	

Durably	
 stores	

masters’	
 replicated	
 data	

Distributed Key-Value Store
•  Data model: key-value

–  Key: 64KB binary string
–  Value: Binary blob up to 1MB
–  Keys scoped into tables

•  Tables may span multiple servers (“tablets”)
–  Addressing: (tableId, “key”)

8	

Master	
 Server	
 12	

Hash	
 Table	
 Object	
 RAM	
 Tablet	
 Map	

Client	

Read(5,	
 	
 “foo”)	

Hash	

<5,	
 	
 1000>	

Table	
 Range	
 Server	

5	
 0	
 –	
 99	
 7	

5	
 100	
 –	

10,000	

12	

.	
 .	
 .	
 .	
 .	
 .	
 .	
 .	
 .	

<5,	
 “foo”>	

Hash	

Outline
•  RAMCloud Background
Ø  Motivation

–  Goals & problems with current memory managers
•  Contributions

–  Log-structured memory
–  Two-level Cleaning
–  Evaluation
–  Cost-Benefit Improvements

•  Conclusion
–  Related Work
–  Future Work
–  Acknowledgements
–  Summary

9	

Memory Management Goals

•  Problem
Need a way to manage memory in RAMCloud that:

10	

1.  Does	
 not	
 waste	
 space	

(DRAM	
 is	
 expensive)	

	

2.  Has	
 high	
 throughput	

(Supports	
 high	
 write	
 rates)	

	

3.  Adapts	
 to	
 changing	
 workloads	

(Gracefully/predicatbly	
 handles	
 workload	
 changes)	

	

4.  Accommodates	
 backups	

(Stored	
 data	
 must	
 be	
 persisted	
 for	
 durability/availability)	

 0

 5

 10

 15

 20

 25

 30

 35

 40

glibc 2.12 malloc Hoard 3.9 jemalloc 3.3.0 tcmalloc 2.0 memcachedBoehm GC 7.2d Java 1.7
OpenJDK

G
B

 U
s

e
d

Allocators

W1
W2
W3
W4
W5
W6
W7
W8

Live

Existing Allocators Unsuitable

11	

•  Existing allocators handle workload changes poorly
–  All waste 50% of memory, or more
–  E.g., W2: Replace 100-byte objects with 130-byte
–  “High performance” allocators tend to be worse

 0

 5

 10

 15

 20

 25

 30

 35

 40

glibc 2.12 malloc Hoard 3.9 jemalloc 3.3.0 tcmalloc 2.0 memcachedBoehm GC 7.2d Java 1.7
OpenJDK

G
B

 U
s

e
d

Allocators

W1
W2
W3
W4
W5
W6
W7
W8

Live

Fragmentation

12	

•  Non-copying allocators cannot relocate allocations
–  Fragmentation wastes memory

	
 	

Memory	
 Layout	

New	
 AllocaGon	

Free	
 Space	

X	
 X	
 X	

 0

 5

 10

 15

 20

 25

 30

 35

 40

glibc 2.12 malloc Hoard 3.9 jemalloc 3.3.0 tcmalloc 2.0 memcachedBoehm GC 7.2d Java 1.7
OpenJDK

G
B

 U
s

e
d

Allocators

W1
W2
W3
W4
W5
W6
W7
W8

Live

Copying Collectors

13	

•  Copying garbage collectors can defragment memory

•  Why still so wasteful? Garbage collection is expensive!
–  Scan memory, copy live data, update pointers
–  Cheaper when space used inefficiently: overcommit 3-5x

	
 	

Memory	
 Layout	
 Before	

Memory	
 Layout	
 Acer	

New	
 AllocaGon	

Goals Revisited

•  Problem
Need a way to manage memory in RAMCloud that:

14	

1.  Does	
 not	
 waste	
 space	

All	
 allocators	
 wasted	
 50%	
 of	
 memory	
 or	
 more	

Cannot	
 trade	
 off	
 performance	
 for	
 efficiency	
 in	
 Java’s	
 collector	

	

2.  Has	
 high	
 throughput	

Copying	
 garbage	
 collecGon	
 is	
 expensive	

	

3.  Adapts	
 to	
 changing	
 workloads	

Might	
 waste	
 a	
 few	
 %,	
 might	
 waste	
 50%	
 or	
 more,	
 might	
 crash	

	

4.  Accommodates	
 backups	

ExisGng	
 allocators	
 are	
 for	
 volaGle	
 memory	

Space/Time Dilemma
•  Efficiency/Adaptability à copying memory manager

–  Defragment memory, adapt to workload changes
•  Problem: Fundamental space vs. time trade-off

•  Insight: Storage systems have key advantages
–  Pointer use is restricted (indexing structures only)
Ø Truly incremental GC (need not scan all of memory)
–  Allocations are explicitly freed

•  Should be able to build faster/more efficient manager
15	

Low	
 Efficiency	
 High	
 Efficiency	

Low	
 Performance	
 Easy	
 Medium	

High	
 Performance	
 Medium	
 Hard	

Garbage	
 Collectors	
 RAMCloud	

Outline
•  RAMCloud Background
•  Motivation

–  Goals & problems with current memory managers
Ø  Contributions

–  Log-structured memory
–  Two-level Cleaning
–  Evaluation
–  Cost-Benefit Improvements

•  Conclusion
–  Related Work
–  Future Work
–  Acknowledgements
–  Summary

16	

•  Durability à Writing to disks à Log structure
–  Large sequential I/Os for high performance
–  Append-only: no update in place à no random I/Os

•  Logging requires a defragmenter (cleaner)
–  Reclaims dead space, curbs length of log

•  Insight: Already need a copying allocator for disk

–  Can use the same technique to manage DRAM

Durability: Log Structure

17	

Disk-­‐based	
 Log	

Before	

Acer	

Clean	

Append	
 at	
 end	
 of	
 log	

Log-structured Memory

18	

•  Master memory: hash table & segmented log
–  Segments are 8MB

•  Each segment replicated on 3 remote backups
–  Unified log structure in DRAM & on disk (à easy for masters to track disk contents)

•  Append only: write objects to end of log (head segment)
–  No in-place updates, no small random disk I/Os

•  Head segment full? Allocate another
–  If no free space, reclaim by cleaning log segments

Segmented	
 Log	

Hash	
 Table	

Log	
 Head	

Master	
 Server	
 Memory	

(table	
 id,	
 key)	

B73	
 B5	
 B18	
 B41	
 B25	
 B7	
 B33	
 B63	
 B59	
 Backup	
 Servers	

Benefits of Segments
•  Key advantages of dividing log into segments:

–  More efficient log cleaning

•  Can choose best segments to clean
•  Fully incremental: Process small portion of log at a time

–  High write bandwidth
•  Striped across many different backup servers

–  High read bandwidth
•  Crucial for fast crash recovery (no in-memory replication)

19	

•  Cleaning incrementally defragments segments
1.  Select segments to clean

2.  Relocate survivors (live objects) to new segment(s)

3.  Free cleaned segments (reuse to write new objects)

Log Cleaning in 3 Steps

20	

Free	
 Free	
 Free	

Free	
 Free	

Free	

Free	
 Free	

Free	

Future	
 log	

head	

	

	

Future	
 survivor	

segment	

	

	

•  Greedily picking emptiest segments is suboptimal
–  Like LFS, RAMCloud selects by cost-benefit
–  Takes free space and stability of data into account

•  Will revisit this later in the talk

–  Slightly different formula than LFS (with a fun story)

1. Selecting Segments

21	

?	
 ?	
 ?	
 ?	

–  Relocate: copy to new segment & update hash table
–  When survivor segment is full, flush to backups

–  Survivor objects sorted by age (not depicted)
•  Segregate objects by est. lifetime to improve future cleaning

2. Relocating Survivors

22	

Hash	
 Table	

X	
 X	

X	

B83	
 B22	
 B53	

Copy	

Update	

Pointers	

•  When is it safe to free/reuse the cleaned segments?

•  In-memory: when RPCs done reading them
–  Concurrent RPCs could be reading cleaned segments
–  RCU-like mechanism: delay reuse until no readers

•  On-disk: when recovery will not try to replay them
–  Log digest written with each new head segment

•  Records which segments are in the log
•  Used by recovery to figure out which segments to replay

–  Next log digest does not include cleaned segments
•  Once written, issue RPCs to backups to free disk space

3. Freeing Segments

23	

Free	

?	

Cost of Cleaning
•  Cleaning cost rises with memory utilisation

–  u: fraction of live bytes in a segment

•  Problem:
Cleaning bottlenecks on disk and network I/O first
–  Disk and memory layouts are the same
–  Disk & network I/O needed to reclaim space in DRAM
–  Higher u à more cleaning à less I/O for client writes

•  Dilemma: Higher utilisation or higher performance? 24	

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100B
yt

e
s

C
o

p
ie

d
 /

 F
re

e
d

Segment Utilisation (%)

u / (1 - u)Bytes	
 copied	
 by	
 cleaner	
 u	
 0.5	
 0.8	
 0.9	

Bytes	
 freed	
 1	
 -­‐	
 u	
 0.5	
 0.2	
 0.1	

Bytes	
 copied	
 /	
 bytes	
 freed	
 u/(1	
 -­‐	
 u)	
 1	
 4	
 9	

For	
 every	
 10	
 bytes	
 to	
 backups:	
 9	
 from	
 cleaner,	
 1	
 for	
 new	
 data	

Only	
 using	
 10%	
 of	
 bandwidth	
 for	
 new	
 data!	

Two-Level Cleaning
•  Solution: Reclaim memory without changing disk log

–  No I/Os to backups
•  Two cleaners:

1.  Compactor: Coalesce in-memory segments

2.  Combined Cleaner: same 3 step cleaner as before
•  Clean multiple segments, write survivors to DRAM & disks

25	

In	
 Memory	

On	
 Disk	

In	
 Memory	

On	
 Disk	

Free	
 space	
 in	
 memory	
 &	
 keep	
 same	
 logical	
 log	
 in	
 DRAM	
 and	
 on	
 disk	

	

Benefit of Two-level Cleaning

•  The best of both worlds:
–  High utilisation of DRAM

•  DRAM has much higher bandwidth than network / disk
•  High compaction costs affordable: can copy more to free less

–  Low I/O overhead for on-disk log (avoids bottlenecks)
•  Disk has much higher capacity
•  Compaction lowers utilisation on disk (compared to memory)
•  Result: Reduced combined cleaning cost, more I/O for writes

26	

In	
 Memory	

On	
 disk	

One-­‐Level	
 Cleaning	

(Combined	
 Cleaning	
 Only)	

Two-­‐Level	
 Cleaning	

(Combined	
 Cleaning	
 &	
 CompacGon)	

Seglets
•  Problem:

How to reuse space freed by compaction?

•  Solution:
Discontiguous in-memory segments
–  In-memory segment: one or more 64KB seglets

•  Starts out with 128 seglets (8MB)
•  Compaction frees unused seglets after coalescing

–  Discontiguity handled in software
•  Initial attempt used MMU, but too slow 27	

Free	

Seglet	

Outline
•  RAMCloud Background
•  Motivation

–  Goals & problems with current memory managers
Ø  Contributions

–  Log-structured memory
–  Two-level Cleaning
Ø Evaluation
–  Cost-Benefit Improvements

•  Conclusion
–  Related Work
–  Future Work
–  Acknowledgements
–  Summary

28	

 0

 10

 20

 30

 40

 50

 60

 30 40 50 60 70 80 90
 0

 100

 200

 300

 400

 500

 600

M
B

/s

O
b

je
ct

s/
s

(x
1

,0
0

0
)

Two-level (Zipfian)
Two-level (Uniform)

100-byte Objects

 0

 50

 100

 150

 200

 250

 30 40 50 60 70 80 90
 0

 50

 100

 150

 200

 250

M
B

/s

O
b

je
ct

s/
s

(x
1

,0
0

0
)

1,000-byte Objects

 0

 50

 100

 150

 200

 250

 300

 30 40 50 60 70 80 90
 0

 5

 10

 15

 20

 25

 30

M
B

/s

O
b

je
ct

s/
s

(x
1

,0
0

0
)

Memory Utilisation %

10,000-byte Objects

Client Write Throughput

29	

Memory	

U5lisa5on	

Performance	

Degrada5on	

(Zipfian)	

Performance	

Degrada5on	

(Uniform)	

80%	
 17%	
 27%	

90%	
 26%	
 49%	

Memory	

U5lisa5on	

Performance	

Degrada5on	

(Zipfian)	

Performance	

Degrada5on	

(Uniform)	

80%	
 15%	
 14%	

90%	
 30%	
 42%	

Memory	

U5lisa5on	

Performance	

Degrada5on	

(Zipfian)	

Performance	

Degrada5on	

(Uniform)	

80%	
 3%	
 4%	

90%	
 3%	
 6%	

3	
 -­‐	
 30%	
 penalty	
 at	
 90%	
 under	
 typical	
 workloads	

I/O Overhead Reduction

30	

90%:	
 1.5	
 -­‐	
 2.2x	

90%:	
 6.1	
 -­‐	
 7.2x	

90%:	
 65	
 –	
 87x	

 0

 1

 2

 3

 4

 5

 6

 30 40 50 60 70 80 90

C
le

a
n

e
r

B
yt

e
s

/
N

e
w

 B
yt

e
s

One-level (Uniform)
Two-level (Uniform)
One-level (Zipfian)
Two-level (Zipfian)

100-byte Objects

 0

 1

 2

 3

 4

 5

 6

 30 40 50 60 70 80 90

C
le

a
n

e
r

B
yt

e
s

/
N

e
w

 B
yt

e
s

1,000-byte Objects

 0

 1

 2

 3

 4

 5

 6

 30 40 50 60 70 80 90

C
le

a
n

e
r

B
yt

e
s

/
N

e
w

 B
yt

e
s

Memory Utilisation %

10,000-byte Objects

Throughput	
 Cleaning	
 I/O	
 Overhead	

 0

 10

 20

 30

 40

 50

 60

 30 40 50 60 70 80 90
 0

 100

 200

 300

 400

 500

 600

M
B

/s

O
b

je
ct

s/
s

(x
1

,0
0

0
)

Two-level (Zipfian)
One-level (Zipfian)

Two-level (Uniform)
One-level (Uniform)

100-byte Objects

 0

 50

 100

 150

 200

 250

 30 40 50 60 70 80 90
 0

 50

 100

 150

 200

 250

M
B

/s

O
b

je
ct

s/
s

(x
1

,0
0

0
)

1,000-byte Objects

 0

 50

 100

 150

 200

 250

 300

 30 40 50 60 70 80 90
 0

 5

 10

 15

 20

 25

 30

M
B

/s

O
b

je
ct

s/
s

(x
1

,0
0

0
)

Memory Utilisation %

10,000-byte Objects

 0

 0.2

 0.4

 0.6

 0.8

 1

70% 80% 90%

R
a

tio
 o

f
P

e
rf

o
rm

a
n

ce
 w

ith
a

n
d

 w
ith

o
u

t
C

le
a

n
in

g

Memory Utilisation

W1
W2
W3
W4
W5
W6
W7
W8

 0

 5

 10

 15

 20

 25

 30

 35

 40

glibc 2.12 malloc Hoard 3.9 jemalloc 3.3.0 tcmalloc 2.0 memcachedBoehm GC 7.2d Java 1.7
OpenJDK

G
B

 U
s

e
d

Allocators

W1
W2
W3
W4
W5
W6
W7
W8

Live

Handling Workload Changes

31	

Old	
 quesGon:	
 How	
 much	
 space	
 is	
 needed	
 to	
 store	
 10	
 GB?	

New	
 quesGon:	
 How	
 good	
 is	
 performance	
 when	
 10	
 GB	
 is	
 X%	
 of	
 memory?	
 	

-­‐	
 28-­‐48%	
 -­‐	
 13-­‐26%	

Write Latency

•  No locality, 100-byte objects, 90% util, back-to-back:
–  Cleaning adds 2% to median latency (17.35 µs)
–  99.9th percentile: 115 µs without cleaning, 900 µs with

•  NIC contention, backup queueing delays? 32	

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

C
u
m

u
la

ti
v
e
 %

 o
f
W

ri
te

s

Microseconds

No Cleaner
With Cleaner

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000

%
 o

f
W

ri
te

s
T

a
ki

n
g
 L

o
n
g
e
r

T
h
a
n
 a

 G
iv

e
n
 T

im
e
 (

L
o
g
 S

ca
le

)

Microseconds (Log Scale)

No Cleaner
With Cleaner

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

A B C D F

A
g

g
re

g
a

te
 O

p
e

ra
tio

n
s/

s
(M

ill
io

n
s)

YCSB Workloads

HyperDex 1.0rc4
Redis 2.6.14

RAMCloud 75% SKT
RAMCloud 90% SKT

RAMCloud 75% IB
RAMCloud 90% IB

Compared to Other Systems

•  Using Yahoo!’s Cloud Storage Benchmark (YCSB)
–  Faster in all read-dominated cases (B, C, D)
–  Faster than HyperDex in all cases, even w/o Infiniband (1.2 - 2.8x)
–  Need Infiniband to match Redis’ write performance

•  Redis sacrifices consistency and durability for performance
–  At most 26% performance hit from 75% à 90% memory utilisation 33	

Workload	
 Descrip5on	

A	
 50%	
 Read	

50%	
 Update	

B	
 95%	
 Read	

5%	
 Update	

C	
 100%	
 Read	

D	
 95%	
 Read	

5%	
 Insert	

F	
 50%	
 Read	

50%	
 RMW	

LSM in Other Systems?
•  Does LSM make sense only in RAMCloud?

–  Ported RAMCloud’s log to memcached
•  Slab allocator & rebalancer à log & cleaner

•  Different use case
–  No durability à no seglets / two-level cleaning
–  Cache: cleaner does pseudo-LRU
–  Select segments by hit rate, keep at most 75% data

•  YCSB Results:
–  Identical throughput
–  14% to 30% more space efficient
–  Marginal CPU overhead (5%)
–  Adapts faster to workload changes

34	

Goals Revisited

ü High Memory Efficiency
–  Choice is up to you
–  Experiments run up to 90% util with 25-50% perf loss

ü High Performance
–  410k 100-byte writes/sec at 90% utilisation
–  Competitive with other systems

ü Durable
–  All experiments run with 3x replication

ü Adapts to workload changes

35	

Outline
•  RAMCloud Background
•  Motivation

–  Goals & problems with current memory managers
Ø  Contributions

–  Log-structured memory
–  Two-level Cleaning
–  Evaluation
Ø Cost-Benefit Improvements

•  Conclusion
–  Related Work
–  Future Work
–  Acknowledgements
–  Summary

36	

What is Cost-Benefit?
•  Cleaner needs policy to choose segments to clean
•  LFS: a cost-benefit approach better than greedy

–  Greedy: Lowest utilisation (u [0,1])
–  Cost-Benefit: u and stability of data

•  Score segments by

•  Choose ones with highest scores
•  Intuition: Free space in cold segments more valuable

37	

benefit
cost

=
(1−u)× age
1+u

Read	
 segment	
 from	
 disk	
 before	
 cleaning	

∈

Stability	
 factor	

(youngest	
 file	
 in	
 segment)	

LFS Simulator
•  Re-implemented LFS simulator from dissertation:

–  Quick, fun way to:
•  Gain insight into cleaning
•  Test RAMCloud’s combined cleaner

•  Simulates writing & cleaning on a LFS file system
–  Fixed 4KB files, 2MB segments, 100 segs of live data
–  Input:

•  Disk utilisation (u)
•  Access pattern (uniform random, hot-and-cold, exponential)
•  Cleaning policy (greedy, cost-benefit)

–  Output: Write Cost
•  AKA write amplification
•  For LFS, ~2.0 usually optimal

38	

wc =WriteIO+CleanerIO
WriteIO

Fun, but not so quick

39	

?!	

(Hot-­‐and-­‐Cold	
 access	
 pasern:	
 90%	
 of	
 writes	
 to	
 10%	
 of	
 files)	

 0

 4

 8

 12

 16

 20

 24

 0 10 20 30 40 50 60 70 80 90 100

W
ri
te

 C
o
st

Disk Utilisation (%)

C-B (New Sim)
Greedy (New Sim)

C-B (LFS Pub)

Need a Simple Explanation
•  Looked like age was dominating utilisation

–  Forcing too many high-utilisation segments to be cleaned

•  Confident original simulator didn’t use age as described
–  RAMCloud reproduced new simulator results

•  Started looking for simple bugs

–  Unlikely that the actual formula was drastically different
–  What subtle changes could improve cleaning?

•  Tried resetting object ages when cleaned

–  When live object moved, object.age = now
–  Surprisingly good, but hurt future cleaning

(can’t sort objects by age to segregate hot/cold data)

•  Insight: resetting object ages = using the segments’ ages
–  Same as above, but can still sort objects by their ages
–  Why not try that?

40	

age>> (1−u)
1+u

Using Segment Age

41	

 0

 4

 8

 12

 16

 20

 24

 0 10 20 30 40 50 60 70 80 90 100

W
ri
te

 C
o
st

Disk Utilisation (%)

C-B (New Sim)
Greedy (New Sim)

C-B (LFS Pub)

Using Segment Age

42	

 0

 4

 8

 12

 16

 20

 24

 0 10 20 30 40 50 60 70 80 90 100

W
ri
te

 C
o

st

Disk Utilisation (%)

C-B (New Sim)
Greedy (New Sim)

C-B (LFS Pub)
C-B (Segment Age)

Rediscovered?
•  Appears likely original simulator used segment age
•  Supported by a later publication:

–  “The cost-benefit policy chooses the segment which
minimizes the formula

where u is the utilization of the segment and a is the
age of the segment.”

•  Improving the Performance of Log-Structured File Systems
with Adaptive Methods, SOSP ’97

–  Based on descendent of original LFS simulator
•  Still unclear why nobody noticed discrepancy

43	

1+u
a × (1-u)

Outline
•  RAMCloud Background
•  Motivation

–  Goals & problems with current memory managers
•  Contributions

–  Log-structured memory
–  Two-level Cleaning
–  Evaluation
–  Cost-Benefit Improvements

Ø  Conclusion
–  Related Work
–  Future Work
–  Acknowledgements
–  Summary

44	

LSM Related Work

•  Log-structured File Systems
–  Log, segments, cleaning, cost-benefit technique
–  Applied DB and GC techniques to file systems
–  Zebra extended LFS techniques to clusters of servers

•  Garbage Collectors

–  Cleaner generational copying garbage collector
–  Bump-a-pointer allocation
–  Much more difficult / general problem to solve

45	

≈

RAMCloud Related Work

•  In-Memory Databases
–  “Large” datasets entirely in DRAM since early 80s

•  “NoSQL” Storage Systems
–  Sacrifice data models for other features

•  Performance, scalability, durability, etc.

•  Low-latency Distributed Systems
–  Supercomputing interconnects à commodity

distributed systems since early 90s
•  Active Messages, U-Net, etc.

46	

Future Work

•  Analysis of production RAMCloud workloads
–  What are object size & access distributions like?
–  What read:write ratio do we need to support?

•  Optimisations
–  Can we tighten up fast paths in the cleaner?
–  Are there better balancers for two-level cleaning?
–  Decouple in-memory and on-disk structures?
–  Scaling write throughput (multiple logs, or log heads?)
–  What is causing tail latency (with & without cleaning)?
–  Hole-filling techniques from Adaptive Methods LFS work?

47	

Conclusion

•  Log-structured Memory for DRAM-based storage
–  High memory utilisation: 80 - 90%
–  High performance: 410k small writes/sec at 90%
–  Durability: Can survive crashes, power failures
–  Adaptability: Handles workload changes

•  Two-level cleaning allows same DRAM and disk format
–  Reduces I/O overheads (up to 87x)
–  Higher memory efficiency (cheap to track disk log)

•  Useful technique for other DRAM-based stores

48	

Acknowledgements

•  John, David, Mendel, Christos, Leonard
•  RAMClouders:

–  Gen 1: Ryan, Diego, Aravind
(Cup Half Empty)

–  Gen 1.5: Ankita, Nandu, Elliot, Ali, Alex, Asaf,
 Christian, Stephen, Satoshi, Arjun

–  Gen 2: Jonathan, Behnam, Henry, Ashish, Collin,
 Adam

•  Aston
•  Mom, Dad

49	

(You	
 asked	
 for	
 it)	

Summary

•  Contributions
–  Log-structured memory

•  High performance, high memory utilisation, durability

–  Two-level cleaning
•  Optimizing the utilisation/write-cost trade-off

–  Cost-Benefit Improvements
•  Improved heuristic for selecting segments to clean

–  Parallel cleaning
•  Concurrent cleaning & writing, overheads off critical path

–  Cleaner balancing
•  Choosing how much of each cleaner to run

50	

