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RAMCloud Introduction 

•  General-purpose datacenter storage system 
•  All data in DRAM at all times 
•  Pushing two boundaries: 

–  Low Latency: 5 – 10µs roundtrip  (small reads) 
–  Large Scale: To 10,000 servers, ~1PB total memory 

•  Goal: 
–  Enable novel applications with 100 – 1,000x increase 

in serial storage ops/sec 
•  Problem: 

–  How to store data while getting high performance, 
high memory utilisation, and durability in a multi-
tenant environment? 
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Thesis & Key Results 
•  Structuring memory as a log allows DRAM-based 

storage systems to achieve: 
–  High allocation performance 
–  High memory efficiency 

•  Even under changing workloads 

–  Durability 

•  RAMCloud’s log-structured memory: 
–  410k durable 100-byte writes/s using 90% of memory 
–  2% median latency increase due to management 
–  Applicable to other DRAM-based systems 

3	
  



Contributions 
•  Log-structured memory 

–  High performance, high memory utilisation, durability 
•  Two-level cleaning 

–  Durability with low disk & network I/O overhead 
•  Cost-Benefit Improvements 

–  Improved heuristic for selecting segments to clean 
•  Parallel cleaning 

–  Fast memory allocation, overheads off critical path 
•  Cleaner balancing 

–  Policies for choosing how much of each cleaner to run 
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–  Goals & problems with current memory managers 
•  Contributions 
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•  Conclusion 
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–  Future Work 
–  Acknowledgements 
–  Summary 

5	
  



Outline 
Ø  RAMCloud Background 
•  Motivation 

–  Goals & problems with current memory managers 
•  Contributions 

–  Log-structured memory 
–  Two-level Cleaning 
–  Evaluation 
–  Cost-Benefit Improvements 

•  Conclusion 
–  Related Work 
–  Future Work 
–  Acknowledgements 
–  Summary 

6	
  



Master	
  

Backup	
  

Master	
  

Backup	
  
…	
  

App	
  

Library	
  

App	
  

Library	
  

App	
  

Library	
  

App	
  

Library	
  
…	
  

Datacenter	
  
Network	
   Coordinator	
  

Up	
  to	
  10,000	
  Storage	
  Servers	
  

RAMCloud Architecture 

7	
  

Up	
  to	
  100,000	
  Applica5on	
  Servers	
  

Master	
  

Backup	
  

Master	
  

Backup	
  

5µs	
  RTT	
  for	
  small	
  RPCs	
  
Full	
  bisecGon	
  bandwidth	
  

Key-­‐Value	
  Store	
  
100s	
  of	
  GB	
  of	
  DRAM	
  

Durably	
  stores	
  
masters’	
  replicated	
  data	
  



Distributed Key-Value Store 
•  Data model: key-value 

–  Key: 64KB binary string 
–  Value: Binary blob up to 1MB 
–  Keys scoped into tables 

•  Tables may span multiple servers (“tablets”) 
–  Addressing: (tableId, “key”) 
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Memory Management Goals 

•  Problem 
Need a way to manage memory in RAMCloud that: 
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•  Existing allocators handle workload changes poorly 
–  All waste 50% of memory, or more 
–  E.g., W2: Replace 100-byte objects with 130-byte 
–  “High performance” allocators tend to be worse 



 0

 5

 10

 15

 20

 25

 30

 35

 40

glibc 2.12 malloc Hoard 3.9 jemalloc 3.3.0 tcmalloc 2.0 memcachedBoehm GC 7.2d Java 1.7
OpenJDK

G
B

 U
s

e
d

Allocators

W1
W2
W3
W4
W5
W6
W7
W8

Live

Fragmentation 

12	
  

•  Non-copying allocators cannot relocate allocations 
–  Fragmentation wastes memory 
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•  Copying garbage collectors can defragment memory 
 
 
 
 

•  Why still so wasteful?  Garbage collection is expensive! 
–  Scan memory, copy live data, update pointers 
–  Cheaper when space used inefficiently: overcommit 3-5x 
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Goals Revisited 

•  Problem 
Need a way to manage memory in RAMCloud that: 
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Space/Time Dilemma 
•  Efficiency/Adaptability à copying memory manager 

–  Defragment memory, adapt to workload changes 
•  Problem: Fundamental space vs. time trade-off 

 
 
 
 
 

•  Insight: Storage systems have key advantages 
–  Pointer use is restricted (indexing structures only) 
Ø Truly incremental GC (need not scan all of memory) 
–  Allocations are explicitly freed 

•  Should be able to build faster/more efficient manager 
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•  Durability à Writing to disks à Log structure 
–  Large sequential I/Os for high performance 
–  Append-only: no update in place à no random I/Os 

 
 
 
 

•  Logging requires a defragmenter (cleaner) 
–  Reclaims dead space, curbs length of log 

 
 
 
 

 
•  Insight: Already need a copying allocator for disk 

–  Can use the same technique to manage DRAM 

Durability: Log Structure 
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Log-structured Memory 
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•  Master memory: hash table & segmented log 
–  Segments are 8MB 

•  Each segment replicated on 3 remote backups 
–  Unified log structure in DRAM & on disk (à easy for masters to track disk contents) 

•  Append only: write objects to end of log (head segment) 
–  No in-place updates, no small random disk I/Os 

•  Head segment full? Allocate another 
–  If no free space, reclaim by cleaning log segments 

Segmented	
  Log	
  

Hash	
  Table	
  

Log	
  Head	
  

Master	
  Server	
  Memory	
  

(table	
  id,	
  key)	
  

B73	
   B5	
   B18	
   B41	
   B25	
   B7	
   B33	
   B63	
   B59	
  Backup	
  Servers	
  



Benefits of Segments 
•  Key advantages of dividing log into segments: 

 
 
 
–  More efficient log cleaning 

•  Can choose best segments to clean 
•  Fully incremental: Process small portion of log at a time 

–  High write bandwidth 
•  Striped across many different backup servers 

–  High read bandwidth 
•  Crucial for fast crash recovery (no in-memory replication) 
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•  Cleaning incrementally defragments segments 
1.  Select segments to clean 

  
 
 
 
 
 
 

2.  Relocate survivors (live objects) to new segment(s) 
 
 
 

 
3.  Free cleaned segments (reuse to write new objects) 

Log Cleaning in 3 Steps 
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•  Greedily picking emptiest segments is suboptimal 
–  Like LFS, RAMCloud selects by cost-benefit 
–  Takes free space and stability of data into account 

 
•  Will revisit this later in the talk 

–  Slightly different formula than LFS (with a fun story) 

1. Selecting Segments 
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–  Relocate: copy to new segment & update hash table 
–  When survivor segment is full, flush to backups 

 
   

 
 
 

–  Survivor objects sorted by age (not depicted) 
•  Segregate objects by est. lifetime to improve future cleaning 

2. Relocating Survivors 
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•  When is it safe to free/reuse the cleaned segments? 

•  In-memory: when RPCs done reading them  
–  Concurrent RPCs could be reading cleaned segments 
–  RCU-like mechanism: delay reuse until no readers 

 

•  On-disk: when recovery will not try to replay them 
–  Log digest written with each new head segment 

•  Records which segments are in the log 
•  Used by recovery to figure out which segments to replay 

–  Next log digest does not include cleaned segments 
•  Once written, issue RPCs to backups to free disk space 

3. Freeing Segments 
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Cost of Cleaning 
•  Cleaning cost rises with memory utilisation 

–  u: fraction of live bytes in a segment 

 
  

•  Problem: 
Cleaning bottlenecks on disk and network I/O first 
–  Disk and memory layouts are the same 
–  Disk & network I/O needed to reclaim space in DRAM 
–  Higher u à more cleaning à less I/O for client writes 

•  Dilemma: Higher utilisation or higher performance? 24	
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Two-Level Cleaning 
•  Solution: Reclaim memory without changing disk log 

–  No I/Os to backups 
•  Two cleaners: 

1.  Compactor: Coalesce in-memory segments 
 
 
 
 
 
 
 
  

2.  Combined Cleaner: same 3 step cleaner as before 
•  Clean multiple segments, write survivors to DRAM & disks 
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Benefit of Two-level Cleaning 

•  The best of both worlds: 
–  High utilisation of DRAM 

•  DRAM has much higher bandwidth than network / disk 
•  High compaction costs affordable: can copy more to free less 

–  Low I/O overhead for on-disk log (avoids bottlenecks) 
•  Disk has much higher capacity 
•  Compaction lowers utilisation on disk (compared to memory) 
•  Result: Reduced combined cleaning cost, more I/O for writes 

26	
  

In	
  Memory	
  

On	
  disk	
  

One-­‐Level	
  Cleaning	
  
(Combined	
  Cleaning	
  Only)	
  

Two-­‐Level	
  Cleaning	
  
(Combined	
  Cleaning	
  &	
  CompacGon)	
  



Seglets 
•  Problem: 

How to reuse space freed by compaction? 
 
 
  
 

•  Solution: 
Discontiguous in-memory segments 
–  In-memory segment: one or more 64KB seglets 

•  Starts out with 128 seglets (8MB) 
•  Compaction frees unused seglets after coalescing 

 
 
 

–  Discontiguity handled in software 
•  Initial attempt used MMU, but too slow 27	
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I/O Overhead Reduction 
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Write Latency 

•  No locality, 100-byte objects, 90% util, back-to-back: 
–  Cleaning adds 2% to median latency (17.35 µs) 
–  99.9th percentile: 115 µs without cleaning, 900 µs with 

•  NIC contention, backup queueing delays? 32	
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Compared to Other Systems 

•  Using Yahoo!’s Cloud Storage Benchmark (YCSB) 
–  Faster in all read-dominated cases (B, C, D) 
–  Faster than HyperDex in all cases, even w/o Infiniband (1.2 - 2.8x) 
–  Need Infiniband to match Redis’ write performance 

•  Redis sacrifices consistency and durability for performance 
–  At most 26% performance hit from 75% à 90% memory utilisation 33	
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LSM in Other Systems? 
•  Does LSM make sense only in RAMCloud? 

–  Ported RAMCloud’s log to memcached 
•  Slab allocator & rebalancer à log & cleaner 

•  Different use case 
–  No durability à no seglets / two-level cleaning 
–  Cache: cleaner does pseudo-LRU 
–  Select segments by hit rate, keep at most 75% data 

•  YCSB Results: 
–  Identical throughput 
–  14% to 30% more space efficient 
–  Marginal CPU overhead (5%) 
–  Adapts faster to workload changes 
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Goals Revisited 

ü High Memory Efficiency 
–  Choice is up to you 
–  Experiments run up to 90% util with 25-50% perf loss 

ü High Performance 
–  410k 100-byte writes/sec at 90% utilisation 
–  Competitive with other systems 

ü Durable 
–  All experiments run with 3x replication 

ü Adapts to workload changes 
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What is Cost-Benefit? 
•  Cleaner needs policy to choose segments to clean 
•  LFS: a cost-benefit approach better than greedy 

–  Greedy: Lowest utilisation (u    [0,1]) 
–  Cost-Benefit: u and stability of data 

•  Score segments by 
 
 
 
 

•  Choose ones with highest scores 
•  Intuition: Free space in cold segments more valuable 
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LFS Simulator 
•  Re-implemented LFS simulator from dissertation: 

–  Quick, fun way to: 
•  Gain insight into cleaning 
•  Test RAMCloud’s combined cleaner 

•  Simulates writing & cleaning on a LFS file system 
–  Fixed 4KB files, 2MB segments, 100 segs of live data 
–  Input: 

•  Disk utilisation (u) 
•  Access pattern (uniform random, hot-and-cold, exponential) 
•  Cleaning policy (greedy, cost-benefit) 

–  Output: Write Cost 
•  AKA write amplification 
•  For LFS, ~2.0 usually optimal 
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WriteIO



Fun, but not so quick 
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Need a Simple Explanation 
•  Looked like age was dominating utilisation 

–  Forcing too many high-utilisation segments to be cleaned 
 

•  Confident original simulator didn’t use age as described 
–  RAMCloud reproduced new simulator results 

 
•  Started looking for simple bugs 

–  Unlikely that the actual formula was drastically different 
–  What subtle changes could improve cleaning? 

 
•  Tried resetting object ages when cleaned 

–  When live object moved, object.age = now 
–  Surprisingly good, but hurt future cleaning 

(can’t sort objects by age to segregate hot/cold data) 
 

•  Insight: resetting object ages = using the segments’ ages 
–  Same as above, but can still sort objects by their ages 
–  Why not try that? 
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Using Segment Age 
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Using Segment Age 
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Rediscovered? 
•  Appears likely original simulator used segment age 
•  Supported by a later publication: 

–  “The cost-benefit policy chooses the segment which 
minimizes the formula 
 
 
where u is the utilization of the segment and a is the 
age of the segment.” 

•  Improving the Performance of Log-Structured File Systems 
with Adaptive Methods, SOSP ’97 

–  Based on descendent of original LFS simulator 
•  Still unclear why nobody noticed discrepancy 
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Outline 
•  RAMCloud Background 
•  Motivation 

–  Goals & problems with current memory managers 
•  Contributions 

–  Log-structured memory 
–  Two-level Cleaning 
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–  Cost-Benefit Improvements 
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–  Related Work 
–  Future Work 
–  Acknowledgements 
–  Summary 
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LSM Related Work 

•  Log-structured File Systems 
–  Log, segments, cleaning, cost-benefit technique 
–  Applied DB and GC techniques to file systems 
–  Zebra extended LFS techniques to clusters of servers 

 
•  Garbage Collectors 

–  Cleaner      generational copying garbage collector 
–  Bump-a-pointer allocation 
–  Much more difficult / general problem to solve 
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RAMCloud Related Work 

•  In-Memory Databases 
–  “Large” datasets entirely in DRAM since early 80s 

•  “NoSQL” Storage Systems 
–  Sacrifice data models for other features 

•  Performance, scalability, durability, etc. 

•  Low-latency Distributed Systems 
–  Supercomputing interconnects à commodity 

distributed systems since early 90s 
•  Active Messages, U-Net, etc. 
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Future Work 

•  Analysis of production RAMCloud workloads 
–  What are object size & access distributions like? 
–  What read:write ratio do we need to support? 

•  Optimisations 
–  Can we tighten up fast paths in the cleaner? 
–  Are there better balancers for two-level cleaning? 
–  Decouple in-memory and on-disk structures? 
–  Scaling write throughput (multiple logs, or log heads?) 
–  What is causing tail latency (with & without cleaning)? 
–  Hole-filling techniques from Adaptive Methods LFS work? 
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Conclusion 

•  Log-structured Memory for DRAM-based storage 
–  High memory utilisation: 80 - 90% 
–  High performance: 410k small writes/sec at 90% 
–  Durability: Can survive crashes, power failures 
–  Adaptability: Handles workload changes 

•  Two-level cleaning allows same DRAM and disk format 
–  Reduces I/O overheads (up to 87x) 
–  Higher memory efficiency (cheap to track disk log) 

 
•  Useful technique for other DRAM-based stores 

48	
  



Acknowledgements 

•  John, David, Mendel, Christos, Leonard 
•  RAMClouders: 

–  Gen 1:     Ryan, Diego, Aravind  
(Cup Half Empty) 

–  Gen 1.5:  Ankita, Nandu, Elliot, Ali, Alex, Asaf, 
                Christian, Stephen, Satoshi, Arjun 

–  Gen 2:     Jonathan, Behnam, Henry, Ashish, Collin, 
                Adam 

•  Aston 
•  Mom, Dad 

49	
  

(You	
  asked	
  for	
  it)	
  



Summary 

•  Contributions 
–  Log-structured memory 

•  High performance, high memory utilisation, durability 

–  Two-level cleaning 
•  Optimizing the utilisation/write-cost trade-off 

–  Cost-Benefit Improvements 
•  Improved heuristic for selecting segments to clean 

–  Parallel cleaning 
•  Concurrent cleaning & writing, overheads off critical path 

–  Cleaner balancing 
•  Choosing how much of each cleaner to run 
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