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RAMCIloud Introduction

General-purpose datacenter storage system

All data in DRAM at all times

Pushing two boundaries:

— Low Latency: 5 — 10us roundtrip (small reads)

— Large Scale: To 10,000 servers, ~1PB total memory
Goal:

— Enable novel applications with 100 — 1,000x increase
In serial storage ops/sec

Problem:
— How to store data while getting high performance,

high memory utilisation, and durability in a multi-
tenant environment?



Thesis & Key Results

« Structuring memory as a log allows DRAM-based
storage systems to achieve:

— High allocation performance

— High memory efficiency
» Even under changing workloads

— Durability

- RAMCloud’s log-structured memory:
— 410k durable 100-byte writes/s using 90% of memory
— 2% median latency increase due to management
— Applicable to other DRAM-based systems



Contributions

Log-structured memory

— High performance, high memory utilisation, durability
Two-level cleaning

— Durability with low disk & network I/O overhead
Cost-Benefit Improvements

— Improved heuristic for selecting segments to clean
Parallel cleaning

— Fast memory allocation, overheads off critical path
Cleaner balancing

— Policies for choosing how much of each cleaner to run
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» RAMCIloud Background



RAMCIloud Architecture
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Distributed Key-Value Store

- Data model: key-value
— Key: 64KB binary string
— Value: Binary blob up to 1MB

— Keys scoped into tables
* Tables may span multiple servers (“tablets”)

— Addressing: (tableld, “key”)
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Outline

» Motivation
— Goals & problems with current memory managers



Memory Management Goals

* Problem
Need a way to manage memory in RAMCloud that:

1.

Does not waste space
(DRAM is expensive)

. Has high throughput

(Supports high write rates)

. Adapts to changing workloads

(Gracefully/predicatbly handles workload changes)

Accommodates backups
(Stored data must be persisted for durability/availability)
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Existing Allocators Unsuitable
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- Existing allocators handle workload changes poorly
— All waste 50% of memory, or more
— E.g., W2: Replace 100-byte objects with 130-byte
— “High performance” allocators tend to be worse
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40

Fragmentation
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Copying Collectors
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- Copying garbage collectors can defragment memory

Memory Layout Before

Memory Layout After

New Allocation m

- Why still so wasteful? Garbage collection is expensive!
— Scan memory, copy live data, update pointers
— Cheaper when space used inefficiently: overcommit 3-5x
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Goals Revisited

Problem
Need a way to manage memory in RAMCloud that:

All allocators wasted 50% of memory or more
Cannot trade off performance for efficiency in Java’s collector

—2—Hashighthroughpot————

Copying garbage collection is expensive

—3—Adaptstochanging workioads™

Might waste a few %, might waste 50% or more, might crash

—4—Accommodatesbackups———

Existing allocators are for volatile memory
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Space/Time Dilemma

Efficiency/Adaptability - copying memory manager
— Defragment memory, adapt to workload changes
Problem: Fundamental space vs. time trade-off

Low Efficiency High Efficiency

Easy Medium
e 1
High Performance Medium i Hard j
Garbage Collectors RAMCloud

Insight: Storage systems have key advantages

— Pointer use is restricted (indexing structures only)

» Truly incremental GC (need not scan all of memory)

— Allocations are explicitly freed
Should be able to build faster/more efficient manager
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Outline

» Contributions

Log-structured memory

— Two-level Cleaning

Evaluation
Cost-Benefit Improvements
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Durability: Log Structure

* Durability = Writing to disks = Log structure
— Large sequential I/Os for high performance
— Append-only: no update in place - no random |/Os

|

Disk-based Log =

)

Append at end of log

- Logging requires a defragmenter (cleaner)

— Reclaims dead space, curbs length of log

y
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 Insight: Already need a copying allocator for disk
— Can use the same technique to manage DRAM
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Log-structured Memory

Master Server Memory

table id, key)

sapsenes (8| &8 [ 8) (B &) &) (888

Master memory: hash table & segmented log
— Segments are 8MB
Each segment replicated on 3 remote backups
— Unified log structure in DRAM & on disk (= easy for masters to track disk contents)
Append only: write objects to end of log (head segment)
— No in-place updates, no small random disk I/Os
Head segment full? Allocate another
— If no free space, reclaim by cleaning log segments 18



Benefits of Segments

- Key advantages of dividing log into segments:
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— More efficient log cleaning
« Can choose best segments to clean
* Fully incremental: Process small portion of log at a time

— High write bandwidth

- Striped across many different backup servers

— High read bandwidth

* Crucial for fast crash recovery (no in-memory replication)
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Log Cleaning in 3 Steps

- Cleaning incrementally defragments segments

3. Free cleaned segments (re
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1. Selecting Segments

, o R &

« Greedily picking emptiest segments is suboptimal
— Like LFS, RAMCloud selects by cost-benefit
— Takes free space and stability of data into account

*  Will revisit this later in the talk
— Slightly different formula than LFS (with a fun story)
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2. Relocating Survivors

Hash Table X

Pointers

— Relocate: copy to new segment & update hash table
— When survivor segment is full, flush to backups

T (w8

B22
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B53
=

— Survivor objects sorted by age (not depicted)
«  Segregate objects by est. lifetime to improve future cleaning 22




3. Freeing Segments

* When is it safe to free/reuse the cleaned segments?

7, ?
// Eﬂ > Free

* In-memory: when RPCs done reading them
— Concurrent RPCs could be reading cleaned segments
— RCU-like mechanism: delay reuse until no readers

* On-disk: when recovery will not try to replay them

— Log digest written with each new head segment
« Records which segments are in the log
« Used by recovery to figure out which segments to replay

— Next log digest does not include cleaned segments
* Once written, issue RPCs to backups to free disk space



Cost of Cleaning

- Cleaning cost rises with memory utilisation
— u: fraction of live bytes in a segment

g § 20 T T T T T T T
Bytes copied by cleaner u 05 08 09 &« | wl-yy— ]
Bytes freed 1-u 05 02 01 5 wf /-
Bytes copied / bytes freed u/(1-u) 1 4 9 ¢ . . T
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Segment Utilisation (%)

For every 10 bytes to backups: 9 from cleaner, 1 for new data
Only using 10% of bandwidth for new data!

* Problem:
Cleaning bottlenecks on disk and network I/O first

— Disk and memory layouts are the same
— Disk & network 1/O needed to reclaim space in DRAM
— Higher u - more cleaning - less |/O for client writes
- Dilemma: Higher utilisation or higher performance?



Two-Level Cleaning

- Solution: Reclaim memory without changing disk log
— No 1/Os to backups
- Two cleaners:
1. Compactor: Coalesce in-memory segments
In Memory Egﬁ Z EE
[ On Disk Iﬁﬂ % E.'.E'

‘ Free space in memory & keep same logical log in DRAM and on disk
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2. Combined Cleaner: same 3 step cleaner as before

«  Clean multiple segments, write survivors to DRAM & disks
25



Benefit of Two-level Cleaning

i o
In Memory L = | ]
On disk . [
One-Level Cleaning Two-Level Cleaning
(Combined Cleaning Only) (Combined Cleaning & Compaction)

* The best of both worlds:

— High utilisation of DRAM
 DRAM has much higher bandwidth than network / disk
« High compaction costs affordable: can copy more to free less

— Low |/O overhead for on-disk log (avoids bottlenecks)
« Disk has much higher capacity
- Compaction lowers utilisation on disk (compared to memory)
« Result: Reduced combined cleaning cost, more 1/O for writes
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Seglets

* Problem:
How to reuse space freed by compaction?
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« Solution:
Discontiguous in-memory segments
— In-memory segment: one or more 64KB seglets

- Starts out with 128 seglets (8MB)
- Compaction frees unused seglets after coalescing
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— Discontiguity handled in software
* |nitial attempt used MMU, but too slow

NN\




» Contributions

» Evaluation

Outline
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Handlmg Workload Changes
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erte Latency
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* No locality, 100-byte objects, 90% util, back-to-back:
— Cleaning adds 2% to median latency (17.35 ys) .

—-T el percentile: 115 ps without cleaning, 900 s with

* NIC contention, backup queueing delays? -



Compared to Other Systems
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YCSB Workloads

+ Using Yahoo!’s Cloud Storage Benchmark (YCSB)
— Faster in all read-dominated cases (B, C, D)
— Faster than HyperDex in all cases, even w/o Infiniband (1.2 - 2.8x)

— Need Infiniband to match Redis’ write performance
+ Redis sacrifices consistency and durability for performance

— At most 26% performance hit from 75% -2 90% memory utilisation



LSM in Other Systems?

- Does LSM make sense only in RAMCloud?
— Ported RAMCloud’s log to memcached

- Slab allocator & rebalancer - log & cleaner

- Different use case

— No durability - no seglets / two-level cleaning

— Cache: cleaner does pseudo-LRU

— Select segments by hit rate, keep at most 75% data
 YCSB Results:

— ldentical throughput

— 14% to 30% more space efficient

— Marginal CPU overhead (5%)

— Adapts faster to workload changes
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Goals Revisited

v" High Memory Efficiency
— Choice is up to you
— Experiments run up to 90% util with 25-50% perf loss
v High Performance
— 410k 100-byte writes/sec at 90% utilisation
— Competitive with other systems
v Durable
— All experiments run with 3x replication
v" Adapts to workload changes

35



Outline

» Contributions

» Cost-Benefit Improvements
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What is Cost-Benefit?

Cleaner needs policy to choose segments to clean
LFS: a cost-benefit approach better than greedy

— Greedy: Lowest utilisation (u € [0,1])

— Cost-Benefit: u and stability of data

Score segments by
Stability factor
benefit ~ (1-u)xage (youngest file in segment)

cost 1+u

Read segment from disk before cleaning

Choose ones with highest scores
Intuition: Free space in cold segments more valuable
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LFS Simulator

* Re-implemented LFS simulator from dissertation:

— Quick, fun way to:
 Gain insight into cleaning
» Test RAMCloud’s combined cleaner

- Simulates writing & cleaning on a LFS file system
— Fixed 4KB files, 2MB segments, 100 segs of live data
— Input:
« Disk utilisation (u)
* Access pattern (uniform random, hot-and-cold, exponential)
+ Cleaning policy (greedy, cost-benefit)

— Output: Write Cost

* AKA write amplification we
* For LFS, ~2.0 usually optimal

_ WritelO + CleanerlO
WritelO




Write Cost

Fun, but not so quick
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(Hot-and-Cold access pattern: 90% of writes to 10% of files) 9



Need a Simple Explanation

Looked like age was dominating utilisation -1
— Forcing too many high-utilisation segments to be cleaned 48¢~~

1+u

Confident original simulator didn’t use age as described
— RAMCIloud reproduced new simulator results

Started looking for simple bugs
— Unlikely that the actual formula was drastically different
— What subtle changes could improve cleaning?

Tried resetting object ages when cleaned
— When live object moved, object.age = now

— Surprisingly good, but hurt future cleaning
(can’t sort objects by age to segregate hot/cold data)

Insight: resetting object ages = using the segments’ ages
— Same as above, but can still sort objects by their ages
— Why not try that?
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Write Cost
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Write Cost
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Rediscovered?

- Appears likely original simulator used segment age
- Supported by a later publication:

— “The cost-benefit policy chooses the segment which

minimizes the formula

1+u
a x (1-u)
where u is the utilization of the segment and a is the
age of the segment.”
* Improving the Performance of Log-Structured File Systems
with Adaptive Methods, SOSP '97

— Based on descendent of original LFS simulator

- Still unclear why nobody noticed discrepancy




Outline

» Conclusion
— Related Work
— Future Work
— Acknowledgements
— Summary
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LSM Related Work

* Log-structured File Systems
— Log, segments, cleaning, cost-benefit technique
— Applied DB and GC techniques to file systems
— Zebra extended LFS techniques to clusters of servers

- Garbage Collectors
— Cleaner = generational copying garbage collector
— Bump-a-pointer allocation
— Much more difficult / general problem to solve
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RAMCIloud Related Work

* In-Memory Databases
— “Large” datasets entirely in DRAM since early 80s

+ “NoSQL” Storage Systems

— Sacrifice data models for other features
* Performance, scalability, durability, etc.

- Low-latency Distributed Systems

— Supercomputing interconnects - commodity
distributed systems since early 90s
* Active Messages, U-Net, etc.
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Future Work

- Analysis of production RAMCloud workloads
— What are object size & access distributions like?
— What read:write ratio do we need to support?

* Optimisations
— Can we tighten up fast paths in the cleaner?
— Are there better balancers for two-level cleaning?
— Decouple in-memory and on-disk structures?
— Scaling write throughput (multiple logs, or log heads?)
— What is causing tail latency (with & without cleaning)?
— Hole-filling techniques from Adaptive Methods LFS work?



Conclusion

* Log-structured Memory for DRAM-based storage
— High memory utilisation: 80 - 90%
— High performance: 410k small writes/sec at 90%
— Durability: Can survive crashes, power failures
— Adaptability: Handles workload changes

- Two-level cleaning allows same DRAM and disk format
— Reduces I/O overheads (up to 87x)
— Higher memory efficiency (cheap to track disk log)

* Useful technique for other DRAM-based stores
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Summary

Contributions

— Log-structured memory
+ High performance, high memory utilisation, durability

— Two-level cleaning
« Optimizing the utilisation/write-cost trade-off

— Cost-Benefit Improvements
 Improved heuristic for selecting segments to clean
— Parallel cleaning
« Concurrent cleaning & writing, overheads off critical path

— Cleaner balancing
« Choosing how much of each cleaner to run
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