Memory and Object
Management in a Distributed
RAM-based Storage System

Thesis Proposal

Steve Rumble
April 234, 2012

RAMCIloud Introduction

General-purpose datacenter storage system

All data in DRAM at all times

Pushing two boundaries:

— Low Latency: 5 — 10us roundtrip (small reads)

— Large Scale: To 10,000 servers, ~1PB total memory
Goal:

— Enable novel applications with 100 — 1,000x increase
iIn sequential storage ops/sec

Problem:

— How to store data while getting high performance,
high memory utilization, and durability?

Thesis

« Structuring memory as a log and using parallel and
two-level cleaning enables high-performance
memory allocation without sacrificing utilization or
durability.

Contributions

Log-structured memory

— High performance in memory with durability on disk
Parallel cleaning

— Fast memory allocation, overheads off critical path
Two-level cleaning

— Optimizing the utilization/write-cost trade-off
Tombstones

— Delete consistency in the face of recoveries

Tablet Migration

— Rebalancing and cluster-wide data management

Outline

« RAMCloud Background
« Contributions
— Log-structured memory
— Parallel Cleaning
— Two-level Cleaning
— Tombstones
— Tablet Migration
« Conclusion
— Status
— Future Work
— Summary

Outline

» RAMCloud Background

RAMCIloud Architecture

Up to 100,000 Application Servers

App App App App
Library Library Library Library

Datacenter
Network

[Coordinator }

Backup Backup Backup Backup
e e e e

[Master} [Master] [Master]

Up to 10,000 Storage Servers

Distributed Key-Value Store

 Data model: key-value
— Keys scoped into tables
— Tables may span multiple servers (“tablets”)
— Addressing: <table=5, key="foo">

/ Client \ / Master Server 12 \
Read(3, “foo”) EEEEFYE “Table | Key

0-99 7
r _____________________
\”h/ 5 100- 12 |]
o 10,000 [(.

<5, 1000>

K Tab|.e.t.|v|apm/ \\ Hash Table Object RAM /

Outline

» Contributions
— Log-structured memory
— Parallel Cleaning
— Two-level Cleaning
— Tombstones
— Tablet Migration

Log-structured Memory

* Log-structure: high disk write bandwidth on backups
— Sequential I/O amortizes seek & rotational latency
— Append only: Objects written to end of log (the head)
— Fast allocation: Increment pointer

/ Master \

<Thl, Key>
Object RAM: Log-structured

<5, “f00">
/
\\ J Head //
/
/

\
Hash Table S , -

7/
\ /
\ /
\ /
/

Log replicated on remote
backup disks

10

Benefits of Segments

* Log divided into fixed-sized segments
— More efficient garbage collection (cleaning)
— High write bandwidth (striped across backups)
— High read bandwidth for recovery

<Tbl, Key> | .

Master \

<5’ “f00”>

Object Deletion

* Problems with deleting & updating objects:
1. Fragmentation: Reclaiming dead space for new writes

M- -

1 Solution: Cleaning

2. Consistency: Skipping dead objects during log replay

Recovery Master

Replay
segment:

* Alive?

J Solution: Tombstones

12

Log Cleaning

 Problem: Deletes & updates create fragmentation
« Cleaning used to reclaim this space
* Procedure:

— Select segments (LFS cost-benefit)

— Write live data to head of log
» Hash table updated to point to new location

— Free cleaned segments

- u N By =

Why Cleaning?

« Alternative: Snapshotting
— Mark current head position
— Write live contents to head
— Reclaim old space - log begins at snapshot position

— [=
\ Wrap %
X Problem: Expensive

— Always copies entire contents of log
v Cleaning can skip segments with low fragmentation

14

Minimizing Write Latency

* Problem: Cleaning contends with regular writes
— Recall our low latency goal
— In steady state must constantly clean
— But interference from cleaning threatens write latency

Cleaner Write k}) Client Write

n N in N

Head Segment

« Solutions:
— Use the cores: Run cleaner in parallel
— Minimize contention: Don'’t clean to head of log

Parallel Cleaning

« Cleaner thread writes to segments outside of log

_____ -
1
1
—_) B e -
P — I s
)] e
7 o
4
H /

~__~~~
-~
"~

Cleaner relocates m New writes proceed
live data in parallel with cleaner

Survivor Segment

« Cleaned and survivor segments atomically swapped
out of / into log when next head allocated

— Each log head enumerates all segments in the log

~ I - -

Previous Head Survivor Segment New Head

16

Parallelism Isn’t Sufficient

« Parallelism can hide some performance impact
 However, cleaning still contends for

— Network, disk, and memory bandwidth

— Opportunities for contention in other parts of system
« Questions:

— How expensive do we think cleaning will be?

— If not cheap enough, how might we do better?

17

Cleaning Efficiency

« Efficiency depends on utilization of selected segments
— The lower the utilization, the cheaper it is

K =0% E— Freed

 To get one segment’s worth of space back, clean:
— 1 segment at 0%, 2 segments at 50%, 4 at 75%, ...
— In general, clean 1 and write _Y segments

I1-u I1-u

Write Cost

« “Write cost”: Avg number of times each byte is copied
— Depends on utilization of segments cleaned

writeCost = L
l-u
— 1.0 1s optimal
» Cleaning always encounters empty segments
— Same as “write amplification” in SSDs
 LFS showed how to optimize cleaning for write cost

— Cost-benefit selection, hot/cold segregation

LFS Approach is Too Expensive

« Conjecture:
DRAM expense compels running at higher utilization

Write cost

T

120 |

10.0
8.0
6.0

4.0

2.0 |

Rosenblum et al, 1991

No variance

FES today

. LFS Cost-Benefit

02 04 06 08

Disk capacity utilization

FFS improved

20

Utilization/Efficiency Dilemma

Problem: Disk and memory layouts coupled
— Cleaning in memory requires cleaning on disk

Forces an unpleasant choice

— Low memory utilization & cheap cleaning, or
— High memory utilization & expensive cleaning

— High utilization of precious memory
— Low cleaning overhead

Idea: What if we decouple disk and
memory?

120 .
00 1 - - - -
8.0 |
6.0
40
20

00 02 04 06 08 1.

Disk capacity utilization

21

« Compact segments in memory without going to disk
— Copy live data to front, use MMU to free and reuse tail

 More dead objects on disk segments than in RAM

Two-level Cleaning

I

—>

=

-

—>

-l

= Lower disk utilization

= Lower write cost (cheaper to clean)

Result:

— Optimizes memory utilization

» Use copious RAM bandwidth to aggressively reclaim space

— Optimizes disk write cost

o 2x data on disk, 50% max disk util., 2.0 max LFS write cost

22

Two-level Cleaning Ramifications

 More space used on backups:

spaceNeeded=replicationFactor x memoryPerMaster * X,
(Where X' > 1 is the disk expansion factor due to two-level cleaning)

— More data to read during recovery
 More resources needed to recover in same time
* Or slower recovery times

— More expense in disk hardware
» Cost per GB in hard drives probably too low to be an issue

 Must sometimes clean segments on disk to before
cleaning segments in memory

— Dependent log entries: not freed until another entry is
purged from log

23

Tombstones: Telling When an
Object was Deleted

* Problem: Must skip deleted objects during recovery
— Objects could otherwise resurrect after failure

 Master’s hash table dictates which objects are alive
— But the hash table is not made durable
— Unlike filesystems, no persistent indexing structure

« Solution: Tombstones

— Metadata appended to log whenever object is
deleted or overwritten

{\/2

BN A

24

Tombstone Issues

* Two main issues:

— Use space to free space

— Garbage collection is tricky

But we have not found a reasonable alternative
— Tombstones are a thorn in our side

— To keep data from being replayed must either:
» Destroy it (overwrite)
« Have some data structure that precludes it (e.g. index)

— Cannot afford synchronous overwrites
— No indexing in RAMCloud

25

LFS Comparison

Similarities

— General structure, nomenclature (log, segments, cleaning)
— Cost-benefit for segment selection

Differences

— Log is memory-based
 Distributed for durability
« Two-level cleaning

— No disk read on cleaning (lower write cost)
— No fixed block size
« Reordering can create fragmentation
— Per-object ages for cost-benefit calculation
« Rather than per-segment
— Filesystem vs. key-value store

* Need to support very small objects (~100 bytes) efficiently
 No tombstones in LFS, but more and different metadata

26

Cluster Memory Management

 Managing memory across servers
 Need policies:

— When to move data between machines
« Server memory utilization too high
« Server request load too high (hot data)

* Need mechanisms:
— How to move data between machines
 Efficiently
 Failure-tolerantly
» Consistently

27

Mechanism: Tablet Migration

« Tablets as basis for data movement
* Log-structure makes migration easy

Migpd e Tedddét! <Table, HashRange>
<5, 0 - 5000>

<5, 5001 - 10000>

"1 Split Tablet request

I} Migrate request
(Scan log, move data)

I} Transfer ownership

Tablets

Destination Master
<Table, HashRange>

—>)
<5, 5001 — 10000>
Coordinator (
—>

Tablets

« Tricky issues
— Migrating tablets away and back, merging adjacent tablets a

» Conclusion
« Status
* Future Work
 Summary

Outline

29

Current Status

“First draft” log and cleaner since 2010/2011
— On-disk cleaning only

— Parallel cleaning with cost-benefit selection
— Very little performance measurement

Two-level prototype cleaner off of main branch

Prototype tablet migration mechanism partially
implemented

— Full tables can be migrated, no splitting/joining, no
failure tolerance

Timeline for Future Work

Goal: Graduation in 12 — 18 months

2012

— Integrate revised two-level cleaner

— Measure performance, iterate on design, write up
— Complete tablet migration mechanism

— Explore cluster-wide data management policies
* When to migrate, what to tablet move, where to move it to, etc.
* Interaction with cleaning ,

2013 &

— Wrap-up, dissertation writing

X4
-

31

Summary: Thesis Contributions

Managing memory for high performance, high
utilization, and durability via:

* Log-structured memory
« Parallel cleaning
 Two-level cleaning

« Tombstones

« Tablet Migration

32

