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RAMCloud Introduction 
•  General-purpose datacenter storage system 
•  All data in DRAM at all times 
•  Pushing two boundaries: 

–  Low Latency: 5 – 10µs roundtrip  (small reads) 
–  Large Scale: To 10,000 servers, ~1PB total memory 

•  Goal: 
–  Enable novel applications with 100 – 1,000x increase 

in sequential storage ops/sec 
•  Problem: 

–  How to store data while getting high performance, 
high memory utilization, and durability? 
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Thesis 
•  Structuring memory as a log and using parallel and 

two-level cleaning enables high-performance 
memory allocation without sacrificing utilization or 
durability. 
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Contributions 
•  Log-structured memory 

–  High performance in memory with durability on disk 
•  Parallel cleaning 

–  Fast memory allocation, overheads off critical path 
•  Two-level cleaning 

–  Optimizing the utilization/write-cost trade-off 
•  Tombstones 

–  Delete consistency in the face of recoveries 
•  Tablet Migration 

–  Rebalancing and cluster-wide data management 
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Distributed Key-Value Store 
•  Data model: key-value 

–  Keys scoped into tables 
–  Tables may span multiple servers (“tablets”) 
–  Addressing: <table=5, key=“foo”> 
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Log-structured Memory 
•  Log-structure: high disk write bandwidth on backups 

–  Sequential I/O amortizes seek & rotational latency 
–  Append only:  Objects written to end of log (the head) 
–  Fast allocation:  Increment pointer 
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Benefits of Segments 
•  Log divided into fixed-sized segments 

–  More efficient garbage collection (cleaning) 
–  High write bandwidth (striped across backups) 
–  High read bandwidth for recovery 
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Object Deletion 
•  Problems with deleting & updating objects: 

1.  Fragmentation: Reclaiming dead space for new writes 
 
 
q  Solution: Cleaning 

 
2.  Consistency: Skipping dead objects during log replay 

 
 
 
 

q  Solution: Tombstones 
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Log Cleaning 
•  Problem: Deletes & updates create fragmentation 
•  Cleaning used to reclaim this space 
•  Procedure: 

–  Select segments (LFS cost-benefit) 
–  Write live data to head of log 

•  Hash table updated to point to new location 
–  Free cleaned segments 
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Why Cleaning? 
•  Alternative: Snapshotting 

–  Mark current head position 
–  Write live contents to head 
–  Reclaim old space - log begins at snapshot position 

 
 
Х  Problem: Expensive 

–  Always copies entire contents of log 
ü Cleaning can skip segments with low fragmentation 
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Minimizing Write Latency 
•  Problem: Cleaning contends with regular writes 

–  Recall our low latency goal 
–  In steady state must constantly clean 
–  But interference from cleaning threatens write latency 

 
 
 
•  Solutions: 

–  Use the cores: Run cleaner in parallel 
–  Minimize contention: Don’t clean to head of log 
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Parallel Cleaning 
•  Cleaner thread writes to segments outside of log 

 
 
•  Cleaned and survivor segments atomically swapped 

out of / into log when next head allocated 
–  Each log head enumerates all segments in the log 
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Parallelism Isn’t Sufficient 
•  Parallelism can hide some performance impact 
•  However, cleaning still contends for 

–  Network, disk, and memory bandwidth 
–  Opportunities for contention in other parts of system 

•  Questions: 
–  How expensive do we think cleaning will be? 
–  If not cheap enough, how might we do better? 
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•  Efficiency depends on utilization of selected segments 
–  The lower the utilization, the cheaper it is 

 
 
 
 
 
 
 
•  To get one segment’s worth of space back, clean: 

–  1 segment at 0%, 2 segments at 50%, 4 at 75%, … 
–  In general, clean                and write               segments 

Cleaning Efficiency 
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Write Cost 
•  “Write cost”: Avg number of times each byte is copied 

–  Depends on utilization of segments cleaned 
 
 
 

–  1.0 is optimal 
•  Cleaning always encounters empty segments 

–  Same as “write amplification” in SSDs 
•  LFS showed how to optimize cleaning for write cost 

–  Cost-benefit selection, hot/cold segregation 
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LFS Approach is Too Expensive 
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•  Conjecture: 
   DRAM expense compels running at higher utilization 

Rosenblum	  et	  al,	  1991	  



Utilization/Efficiency Dilemma 
•  Problem: Disk and memory layouts coupled 

–  Cleaning in memory requires cleaning on disk 
•  Forces an unpleasant choice 

–  Low memory utilization & cheap cleaning, or 
–  High memory utilization & expensive cleaning 

•  Can we get the best of both worlds? 
–  High utilization of precious memory 
–  Low cleaning overhead 

•  Idea:  What if we decouple disk and 
           memory? 
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Two-level Cleaning 
•  Compact segments in memory without going to disk 

–  Copy live data to front, use MMU to free and reuse tail 
 

•  More dead objects on disk segments than in RAM 
⇒  Lower disk utilization 
⇒  Lower write cost  (cheaper to clean) 

•  Result: 
–  Optimizes memory utilization 

•  Use copious RAM bandwidth to aggressively reclaim space 
–  Optimizes disk write cost 

•  2x data on disk, 50% max disk util., 2.0 max LFS write cost 
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Two-level Cleaning Ramifications 
•  More space used on backups: 

 
 
–  More data to read during recovery 

•  More resources needed to recover in same time 
•  Or slower recovery times 

–  More expense in disk hardware 
•  Cost per GB in hard drives probably too low to be an issue 

•  Must sometimes clean segments on disk to before 
cleaning segments in memory 
–  Dependent log entries: not freed until another entry is 

purged from log 

23	  

𝑠𝑝𝑎𝑐𝑒𝑁𝑒𝑒𝑑𝑒𝑑=𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟  ∗  𝑚𝑒𝑚𝑜𝑟𝑦𝑃𝑒𝑟𝑀𝑎𝑠𝑡𝑒𝑟  ∗  𝑋,	  
	  	  	  	  	  (Where	  𝑋	  ≥	  1	  is	  the	  disk	  expansion	  factor	  due	  to	  two-‐level	  cleaning)	  



Tombstones: Telling When an 
Object was Deleted 

•  Problem: Must skip deleted objects during recovery 
–  Objects could otherwise resurrect after failure 

•  Master’s hash table dictates which objects are alive 
–  But the hash table is not made durable 
–  Unlike filesystems, no persistent indexing structure 

•  Solution: Tombstones 
–  Metadata appended to log whenever  object is 

deleted or overwritten 
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Tombstone Issues 
•  Two main issues: 

–  Use space to free space 
–  Garbage collection is tricky 

•  But we have not found a reasonable alternative 
–  Tombstones are a thorn in our side 
–  To keep data from being replayed must either: 

•  Destroy it (overwrite) 
•  Have some data structure that precludes it (e.g. index) 

–  Cannot afford synchronous overwrites 
–  No indexing in RAMCloud 
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LFS Comparison 
•  Similarities 

–  General structure, nomenclature (log, segments, cleaning) 
–  Cost-benefit for segment selection 

•  Differences 
–  Log is memory-based 

•  Distributed for durability 
•  Two-level cleaning 

–  No disk read on cleaning (lower write cost) 
–  No fixed block size 

•  Reordering can create fragmentation 
–  Per-object ages for cost-benefit calculation 

•  Rather than per-segment 
–  Filesystem vs. key-value store 

•  Need to support very small objects (~100 bytes) efficiently 
•  No tombstones in LFS, but more and different metadata 
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Cluster Memory Management 
•  Managing memory across servers 
•  Need policies: 

–  When to move data between machines 
•  Server memory utilization too high 
•  Server request load too high (hot data) 

•  Need mechanisms: 
–  How to move data between machines 

•  Efficiently 
•  Failure-tolerantly 
•  Consistently 
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Mechanism: Tablet Migration 
•  Tablets as basis for data movement 
•  Log-structure makes migration easy 

 
 

 
 
 
•  Tricky issues 

–  Migrating tablets away and back, merging adjacent tablets 28	  
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Current Status 
•  “First draft” log and cleaner since 2010/2011 

–  On-disk cleaning only 
–  Parallel cleaning with cost-benefit selection 
–  Very little performance measurement 

 
•  Two-level prototype cleaner off of main branch 

 
•  Prototype tablet migration mechanism partially 

implemented 
–  Full tables can be migrated, no splitting/joining, no 

failure tolerance 
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Timeline for Future Work 
•  Goal: Graduation in 12 – 18 months 

 
•  2012 

–  Integrate revised two-level cleaner 
–  Measure performance, iterate on design, write up 
–  Complete tablet migration mechanism 
–  Explore cluster-wide data management policies 

•  When to migrate, what to tablet move, where to move it to, etc. 
•  Interaction with cleaning 

 
•  2013 

–  Wrap-up, dissertation writing 
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Summary: Thesis Contributions 

Managing memory for high performance, high 
utilization, and durability via: 
 
•  Log-structured memory 
•  Parallel cleaning 
•  Two-level cleaning 
•  Tombstones 
•  Tablet Migration 

32	  


