
Memory and Object
Management in a Distributed
RAM-based Storage System

Thesis Proposal

Steve Rumble
April 23rd, 2012

RAMCloud Introduction
•  General-purpose datacenter storage system
•  All data in DRAM at all times
•  Pushing two boundaries:

–  Low Latency: 5 – 10µs roundtrip (small reads)
–  Large Scale: To 10,000 servers, ~1PB total memory

•  Goal:
–  Enable novel applications with 100 – 1,000x increase

in sequential storage ops/sec
•  Problem:

–  How to store data while getting high performance,
high memory utilization, and durability?

2	

Thesis
•  Structuring memory as a log and using parallel and

two-level cleaning enables high-performance
memory allocation without sacrificing utilization or
durability.

3	

Contributions
•  Log-structured memory

–  High performance in memory with durability on disk
•  Parallel cleaning

–  Fast memory allocation, overheads off critical path
•  Two-level cleaning

–  Optimizing the utilization/write-cost trade-off
•  Tombstones

–  Delete consistency in the face of recoveries
•  Tablet Migration

–  Rebalancing and cluster-wide data management

4	

Outline
•  RAMCloud Background
•  Contributions

–  Log-structured memory
–  Parallel Cleaning
–  Two-level Cleaning
–  Tombstones
–  Tablet Migration

•  Conclusion
–  Status
–  Future Work
–  Summary

5	

Outline
Ø RAMCloud Background
•  Contributions

–  Log-structured memory
–  Parallel Cleaning
–  Two-level Cleaning
–  Tombstones
–  Tablet Migration

•  Conclusion
–  Status
–  Future Work
–  Summary

6	

Master	

Backup	

Master	

Backup	
…	

App	

Library	

App	

Library	

App	

Library	

App	

Library	
…	

Datacenter	
Network	 Coordinator	

Up	 to	 10,000	 Storage	 Servers	

RAMCloud Architecture

7	

Up	 to	 100,000	 Applica5on	 Servers	

Master	

Backup	

Master	

Backup	

Distributed Key-Value Store
•  Data model: key-value

–  Keys scoped into tables
–  Tables may span multiple servers (“tablets”)
–  Addressing: <table=5, key=“foo”>

8	

Master	 Server	 12	

Hash	 Table	 Object	 RAM	 Tablet	 Map	

Client	

Read(5,	 	 “foo”)	

Hash	

<5,	 	 1000>	

Table	 Range	 Server	

5	 0	 –	 99	 7	

5	 100	 –	
10,000	

12	

.	 	

Table	 Key	

3	 “bar”	

5	 “foo”	

.	 	

Outline
•  RAMCloud Background
Ø Contributions

–  Log-structured memory
–  Parallel Cleaning
–  Two-level Cleaning
–  Tombstones
–  Tablet Migration

•  Conclusion
–  Status
–  Future Work
–  Summary

9	

Log-structured Memory
•  Log-structure: high disk write bandwidth on backups

–  Sequential I/O amortizes seek & rotational latency
–  Append only: Objects written to end of log (the head)
–  Fast allocation: Increment pointer

10	

Master	
<Tbl,	 Key>	

<5,	 “foo”>	

Hash	 Table	

Object	 RAM:	 Log-‐structured	

Head	

Log	 replicated	 on	 remote	
backup	 disks	

Benefits of Segments
•  Log divided into fixed-sized segments

–  More efficient garbage collection (cleaning)
–  High write bandwidth (striped across backups)
–  High read bandwidth for recovery

11	

Master	
<Tbl,	 Key>	

<5,	 “foo”>	

Hash	 Table	

Log	

Backup	 Backup	 Backup	

Object Deletion
•  Problems with deleting & updating objects:

1.  Fragmentation: Reclaiming dead space for new writes

q  Solution: Cleaning

2.  Consistency: Skipping dead objects during log replay

q  Solution: Tombstones
12	

.	 	 .	 	 .	

Recovery	 Master	

Alive?	

Replay	
segment:	

Log Cleaning
•  Problem: Deletes & updates create fragmentation
•  Cleaning used to reclaim this space
•  Procedure:

–  Select segments (LFS cost-benefit)
–  Write live data to head of log

•  Hash table updated to point to new location
–  Free cleaned segments

13	

Why Cleaning?
•  Alternative: Snapshotting

–  Mark current head position
–  Write live contents to head
–  Reclaim old space - log begins at snapshot position

Х  Problem: Expensive

–  Always copies entire contents of log
ü Cleaning can skip segments with low fragmentation

14	

Snapshot	 Wrap	

Minimizing Write Latency
•  Problem: Cleaning contends with regular writes

–  Recall our low latency goal
–  In steady state must constantly clean
–  But interference from cleaning threatens write latency

•  Solutions:

–  Use the cores: Run cleaner in parallel
–  Minimize contention: Don’t clean to head of log

15	

Head	 Segment	

Client	 Write	 Cleaner	 Write	

Parallel Cleaning
•  Cleaner thread writes to segments outside of log

•  Cleaned and survivor segments atomically swapped

out of / into log when next head allocated
–  Each log head enumerates all segments in the log

16	

Survivor	 Segment	

Survivor	 Segment	 Previous	 Head	 New	 Head	

Cleaner	 relocates	
live	 data	

New	 writes	 proceed	
in	 parallel	 with	 cleaner	

Parallelism Isn’t Sufficient
•  Parallelism can hide some performance impact
•  However, cleaning still contends for

–  Network, disk, and memory bandwidth
–  Opportunities for contention in other parts of system

•  Questions:
–  How expensive do we think cleaning will be?
–  If not cheap enough, how might we do better?

17	

•  Efficiency depends on utilization of selected segments
–  The lower the utilization, the cheaper it is

•  To get one segment’s worth of space back, clean:

–  1 segment at 0%, 2 segments at 50%, 4 at 75%, …
–  In general, clean and write segments

Cleaning Efficiency

18	

µ	 =	 0%	

µ	 =	 50%	

Freed	

Freed	

1
1−µ

µ
1−µ

Write Cost
•  “Write cost”: Avg number of times each byte is copied

–  Depends on utilization of segments cleaned

–  1.0 is optimal
•  Cleaning always encounters empty segments

–  Same as “write amplification” in SSDs
•  LFS showed how to optimize cleaning for write cost

–  Cost-benefit selection, hot/cold segregation

19	

writeCost = 1
1−µ

LFS Approach is Too Expensive

20	

•  Conjecture:
 DRAM expense compels running at higher utilization

Rosenblum	 et	 al,	 1991	

Utilization/Efficiency Dilemma
•  Problem: Disk and memory layouts coupled

–  Cleaning in memory requires cleaning on disk
•  Forces an unpleasant choice

–  Low memory utilization & cheap cleaning, or
–  High memory utilization & expensive cleaning

•  Can we get the best of both worlds?
–  High utilization of precious memory
–  Low cleaning overhead

•  Idea: What if we decouple disk and
 memory?

21	

Two-level Cleaning
•  Compact segments in memory without going to disk

–  Copy live data to front, use MMU to free and reuse tail

•  More dead objects on disk segments than in RAM
⇒  Lower disk utilization
⇒  Lower write cost (cheaper to clean)

•  Result:
–  Optimizes memory utilization

•  Use copious RAM bandwidth to aggressively reclaim space
–  Optimizes disk write cost

•  2x data on disk, 50% max disk util., 2.0 max LFS write cost
22	

Two-level Cleaning Ramifications
•  More space used on backups:

–  More data to read during recovery

•  More resources needed to recover in same time
•  Or slower recovery times

–  More expense in disk hardware
•  Cost per GB in hard drives probably too low to be an issue

•  Must sometimes clean segments on disk to before
cleaning segments in memory
–  Dependent log entries: not freed until another entry is

purged from log

23	

𝑠𝑝𝑎𝑐𝑒𝑁𝑒𝑒𝑑𝑒𝑑=𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑚𝑒𝑚𝑜𝑟𝑦𝑃𝑒𝑟𝑀𝑎𝑠𝑡𝑒𝑟 ∗ 𝑋,	
	 	 	 	 	 (Where	 𝑋	 ≥	 1	 is	 the	 disk	 expansion	 factor	 due	 to	 two-‐level	 cleaning)	

Tombstones: Telling When an
Object was Deleted

•  Problem: Must skip deleted objects during recovery
–  Objects could otherwise resurrect after failure

•  Master’s hash table dictates which objects are alive
–  But the hash table is not made durable
–  Unlike filesystems, no persistent indexing structure

•  Solution: Tombstones
–  Metadata appended to log whenever object is

deleted or overwritten

24	

RIP	

Tombstone Issues
•  Two main issues:

–  Use space to free space
–  Garbage collection is tricky

•  But we have not found a reasonable alternative
–  Tombstones are a thorn in our side
–  To keep data from being replayed must either:

•  Destroy it (overwrite)
•  Have some data structure that precludes it (e.g. index)

–  Cannot afford synchronous overwrites
–  No indexing in RAMCloud

25	

LFS Comparison
•  Similarities

–  General structure, nomenclature (log, segments, cleaning)
–  Cost-benefit for segment selection

•  Differences
–  Log is memory-based

•  Distributed for durability
•  Two-level cleaning

–  No disk read on cleaning (lower write cost)
–  No fixed block size

•  Reordering can create fragmentation
–  Per-object ages for cost-benefit calculation

•  Rather than per-segment
–  Filesystem vs. key-value store

•  Need to support very small objects (~100 bytes) efficiently
•  No tombstones in LFS, but more and different metadata

26	

Cluster Memory Management
•  Managing memory across servers
•  Need policies:

–  When to move data between machines
•  Server memory utilization too high
•  Server request load too high (hot data)

•  Need mechanisms:
–  How to move data between machines

•  Efficiently
•  Failure-tolerantly
•  Consistently

27	

Mechanism: Tablet Migration
•  Tablets as basis for data movement
•  Log-structure makes migration easy

•  Tricky issues

–  Migrating tablets away and back, merging adjacent tablets 28	

Source	 Master	
<Table,	 HashRange>	

<5,	 0	 –	 10000>	

Tablets	

<5,	 0	 –	 5000>	

<5,	 5001	 –	 10000>	

<Table,	 HashRange>	

Tablets	

<5,	 5001	 –	 10000>	

Des5na5on	 Master	

Coordinator	

Split	 Tablet	 request	
Migrate	 request	
(Scan	 log,	 move	 data)	
Transfer	 ownership	

Split	 Tablet!	 Migrate	 Tablet!	

Outline
•  RAMCloud Background
•  Contributions

–  Log-structured memory
–  Parallel Cleaning
–  Two-level Cleaning
–  Tombstones
–  Tablet Migration

Ø Conclusion
•  Status
•  Future Work
•  Summary

29	

Current Status
•  “First draft” log and cleaner since 2010/2011

–  On-disk cleaning only
–  Parallel cleaning with cost-benefit selection
–  Very little performance measurement

•  Two-level prototype cleaner off of main branch

•  Prototype tablet migration mechanism partially

implemented
–  Full tables can be migrated, no splitting/joining, no

failure tolerance

30	

Timeline for Future Work
•  Goal: Graduation in 12 – 18 months

•  2012

–  Integrate revised two-level cleaner
–  Measure performance, iterate on design, write up
–  Complete tablet migration mechanism
–  Explore cluster-wide data management policies

•  When to migrate, what to tablet move, where to move it to, etc.
•  Interaction with cleaning

•  2013

–  Wrap-up, dissertation writing

31	

Summary: Thesis Contributions

Managing memory for high performance, high
utilization, and durability via:

•  Log-structured memory
•  Parallel cleaning
•  Two-level cleaning
•  Tombstones
•  Tablet Migration

32	

