Toward Common Patterns for
Distributed, Concurrent,
Fault-Tolerant Code

Ryan Stutsman

and John Ousterhout
Stanford University

Introduction

* More developers writing more code that is
distributed, concurrent, fault-tolerant (DCFT)

e Hard to getright

e 1000s of logical threads of execution
 Failures require highly adaptive control flow
* No commonly accepted patterns

e Threads versus events but then what?

e A patternfrom our experiences: “
 Small steps whose execution order is based on state
* Potential for correct code more quickly

 Fumblingin the dark; interested in others’ ideas

2

DCFT Code Examples

 HDFS chunk replication
e Coordinating Hadoop jobs

 RAMCloud
e Replicate 1000s of chunks across 1000s of servers
* Coordinate 1000s servers working to recover
failed server

* Coordinate many ongoing recoveries at the same
time

Example: Distributed Log Replication

Client Write Request

Stable
Storage
Servers

Master | In-Memory Log Segments
server | [T [N

I =

8

m
=

\

/i N N

/-\
2

2

 Segmented log replicates client data

Example: Distributed Log Replication

Client Write Request

|
Master | In-Memory Log Segments
server | [T [T
4 7 N N \
Stable -j I |
Storage

Servers
 Segmented log replicates client data

 Failures require recreation of lost segments

Example: Distributed Log Replication

Stable
Storage
Servers

e Failures rec

Server

I =

Master [In—Memory Log Segments

=

2 8

e Segmentec

Client Write Request

=

log replicates client data
uire recreation of lost segments

Example: Distributed Log Replication

Client Write Request

In-Memory Log Segments

)

- 8 =

 Segmented log replicates client data

Master

~
/

Stable
Storage
Servers

 Failures require recreation of lost segments
e Failures can occur at any time

This Type of Code is Hard

* Traditional imperative programming doesn’t
work

* Result: spaghetti code, brittle, buggy

Must “go back”
after failures

 PC doesn’t matter, only state matters

Our Approach: Rules

Conditions

> Action ——>

K’ o N

- Action ——>

State
Variables

Rule: Condition + Action

If unreplicated data and no RPC outstanding and
prior segment footer is replicated

Then containing unreplicated data

Our Approach: Rules

Conditions

Action ——>
State :—-<
Variables Action —>
O

—= Action |-—>

e Execution order determined by state
* Actions are short, non-blocking, atomic
* Failures handled between actions not within

10

Segment Replication Rules
#[condition [Acton

n No backup server selected Choose available server to hold replica

Header unreplicated, no RPC Start RPC containing the header
outstanding

Header unreplicated, RPC completed Mark header replicated; mark prior
segment to allow footer replication

Unreplicated data, no RPC Start write RPC containing up to 1 MB
outstanding, prior footer is replicated of unreplicated data

Unreplicated data, RPC completed Mark sent data as replicated
Segment finalized, following header Start RPC containing the footer

replicated, footer not sent, no RPC
outstanding

(| Segment finalized, RPC completed Mark footer replicated; mark following
segment to allow data replication

On failure reset sent/replicated bytes and RPCs

11

Structuring rules

 How should hundreds of rules be organized?
 Need modularity and clear visualization

 How can rules be evaluated efficiently?
* Polling to test conditions for all rules won’t scale

12

One Approach

Step 2
State Records 2 ____________ >

Step 1 /
o Z
\ Step 1-fail

e Used by HDFS chunk replication

e Structures paired with a thread that polls to find
needed work due to failure

e State records queued between threads/actions
 No modularity; code scattered across threads

13

One Approach

@ Step 2
State Records

2 Step 1 / 2
o ¢
\ Step 1-fail

$

e Complicates concurrency
e CPU parallelism unneeded

* Need fine-grained locking on structures

e But must carefully perforated for
liveness/responsiveness

8

14

Tasks

Rules, state, and a goal
e Similar to how monitors group locks with state
Implemented as a C++ object
State: fields of the object
e Rules: applied via virtual method on the object
e Goal:invariant the task is intended to attain/retain

* Log segment replication
e One task per segment
* Rules send/reap RPCs, reset state on failures
e Goalis met when 3 complete replicas are made

Pools

Applies rules to tasks with unmet goals
e Apoolforeachindependent set of tasks
 Serializes execution of rules in each pool
e Simplifies synchronization

Benefits of Rules, Tasks, and Pools

* Directly determines code structure

e Easeslocal reasoning
e Write arule atatime
e Condition clearly documents expected state
e Actions are short with simple control flow

* Rules are amenable to model checking

e But less restrictive than modeling languages

 Flexible, easy to abuse with gross performance hacks
and odd concurrency needs

* Question: fundamental or just a mismatch of
kernel scheduling/concurrency abstractions to

app?

17

Conclusion

»

e Code pattern from our experiences: “

 Small steps whose order is based on state
e Easy to adapt on failures

 PC doesn’t matter, only state matters
e |[n DCFT code non-linear flow is unavoidable

 Interesting question, how to structure rules
e Thisis one way, we’d love to hear others

19

Isn’t this just state machines?

o Explicit states explode or hide detail

e Similar to code flowcharts of the 70s

 Mental model doesn’t scale well to complex code
e Collate on state rather than on events+state

e Convert all events to state

e Reason about next step based on state alone

e Conditions (implicit states) serve as
documentation
* Provide strong hint about what steps are needed

20

Isn’t this just events?

e Rules take actions in based on state
e Rather than events+state

* Event-based code: handler triggers all
needed actions

* Rules-based code: events just modify state
e Decouples events from rules that react to them
* Event handler unaware of needed reactive steps
e Add reactions without modifying event handler
* Improves modularity

Don’t user-level threads solve this?

 They help
e Support 1000s of lightweight contexts

e Limit interruption to well-defined points
(cooperatively scheduled)

» Stack-trace is still of limited benefit, though
* Threads must recheck for failures after resuming

e Code devolves into small, non-blocking, atomic
actions just as with rules

22

Isn’t this hard to debug?

» Loss of stack context makes debugging hard
e Yes, butit would be lost even with threads

* Fundamental limitation of the need to break
code into reactive, reorderable blocks

e Best we’ve got so far

 Dump state variables when a goal goes unmet for
a long period

* Log aggressively for debugging
e Can add causality tracking to log messages

