
Toward Common Patterns for

Distributed, Concurrent,

Fault-Tolerant Code

Ryan Stutsman

and John Ousterhout
Stanford University

1

Introduction

• More developers writing more code that is
distributed, concurrent, fault-tolerant (DCFT)

• Hard to get right

• 1000s of logical threads of execution

• Failures require highly adaptive control flow

• No commonly accepted patterns

• Threads versus events but then what?

• A pattern from our experiences: “rules”

• Small steps whose execution order is based on state

• Potential for correct code more quickly

• Fumbling in the dark; interested in others’ ideas

2

DCFT Code Examples

• HDFS chunk replication

• Coordinating Hadoop jobs

• RAMCloud

• Replicate 1000s of chunks across 1000s of servers

• Coordinate 1000s servers working to recover

failed server

• Coordinate many ongoing recoveries at the same

time

3

Example: Distributed Log Replication

• Segmented log replicates client data

In-Memory Log Segments

Stable

Storage

Servers

Master

Server

Client Write Request

4

Example: Distributed Log Replication

• Segmented log replicates client data

• Failures require recreation of lost segments

In-Memory Log Segments

Stable

Storage

Servers

Master

Server

Client Write Request

5

Example: Distributed Log Replication

• Segmented log replicates client data

• Failures require recreation of lost segments

In-Memory Log Segments

Stable

Storage

Servers

Master

Server

Client Write Request

6

Example: Distributed Log Replication

• Segmented log replicates client data

• Failures require recreation of lost segments

• Failures can occur at any time

In-Memory Log Segments

Stable

Storage

Servers

Master

Server

Client Write Request

7

• Traditional imperative programming doesn’t

work

• Result: spaghetti code, brittle, buggy

• PC doesn’t matter, only state matters

8

This Type of Code is Hard

Must “go back”

after failures

Our Approach: Rules

Rule: Condition + Action

If unreplicated data and no RPC outstanding and
prior segment footer is replicated

Then start write RPC containing unreplicated data

9

State

Variables

Action

Action

Action

Conditions

Our Approach: Rules

• Execution order determined by state

• Actions are short, non-blocking, atomic

• Failures handled between actions not within

State

Variables

Action

Action

Action

Conditions

10

Segment Replication Rules
Condition Action

1 No backup server selected Choose available server to hold replica

2 Header unreplicated, no RPC

outstanding

Start RPC containing the header

3 Header unreplicated, RPC completed Mark header replicated; mark prior

segment to allow footer replication

4 Unreplicated data, no RPC

outstanding, prior footer is replicated

Start write RPC containing up to 1 MB

of unreplicated data

5 Unreplicated data, RPC completed Mark sent data as replicated

6 Segment finalized, following header

replicated, footer not sent, no RPC

outstanding

Start RPC containing the footer

7 Segment finalized, RPC completed Mark footer replicated; mark following

segment to allow data replication

On failure reset sent/replicated bytes and RPCs

11

Structuring rules

• How should hundreds of rules be organized?

• Need modularity and clear visualization

• How can rules be evaluated efficiently?

• Polling to test conditions for all rules won’t scale

12

One Approach

• Used by HDFS chunk replication

• Structures paired with a thread that polls to find

needed work due to failure

• State records queued between threads/actions

• No modularity; code scattered across threads

13

Step 1

Step 2

Step 1-fail

State Records

One Approach

• Complicates concurrency

• CPU parallelism unneeded

• Need fine-grained locking on structures

• But must carefully perforated for
liveness/responsiveness

14

Step 1

Step 2

Step 1-fail

State Records

State

State

State

Tasks

• Task: Rules, state, and a goal

• Similar to how monitors group locks with state

• Implemented as a C++ object

• State: fields of the object

• Rules: applied via virtual method on the object

• Goal: invariant the task is intended to attain/retain

• Log segment replication
• One task per segment

• Rules send/reap RPCs, reset state on failures

• Goal is met when 3 complete replicas are made

15

Pools

• Pool: Applies rules to tasks with unmet goals

• A pool for each independent set of tasks

• Serializes execution of rules in each pool

• Simplifies synchronization

16

Benefits of Rules, Tasks, and Pools

• Directly determines code structure

• Eases local reasoning
• Write a rule at a time

• Condition clearly documents expected state

• Actions are short with simple control flow

• Rules are amenable to model checking
• But less restrictive than modeling languages

• Flexible, easy to abuse with gross performance hacks
and odd concurrency needs

• Question: fundamental or just a mismatch of
kernel scheduling/concurrency abstractions to
app?

17

Conclusion

• Code pattern from our experiences: “rules”

• Small steps whose order is based on state

• Easy to adapt on failures

• PC doesn’t matter, only state matters

• In DCFT code non-linear flow is unavoidable

• Interesting question, how to structure rules

• This is one way, we’d love to hear others

18

19

Isn’t this just state machines?

• Explicit states explode or hide detail

• Similar to code flowcharts of the 70s

• Mental model doesn’t scale well to complex code

• Collate on state rather than on events+state

• Convert all events to state

• Reason about next step based on state alone

• Conditions (implicit states) serve as

documentation

• Provide strong hint about what steps are needed

20

Isn’t this just events?

• Rules take actions in based on state

• Rather than events+state

• Event-based code: handler triggers all

needed actions

• Rules-based code: events just modify state

• Decouples events from rules that react to them

• Event handler unaware of needed reactive steps

• Add reactions without modifying event handler

• Improves modularity

21

Don’t user-level threads solve this?

• They help

• Support 1000s of lightweight contexts

• Limit interruption to well-defined points

(cooperatively scheduled)

• Stack-trace is still of limited benefit, though

• Threads must recheck for failures after resuming

• Code devolves into small, non-blocking, atomic

actions just as with rules

22

Isn’t this hard to debug?

• Loss of stack context makes debugging hard

• Yes, but it would be lost even with threads

• Fundamental limitation of the need to break

code into reactive, reorderable blocks

• Best we’ve got so far

• Dump state variables when a goal goes unmet for

a long period

• Log aggressively for debugging

• Can add causality tracking to log messages

23

