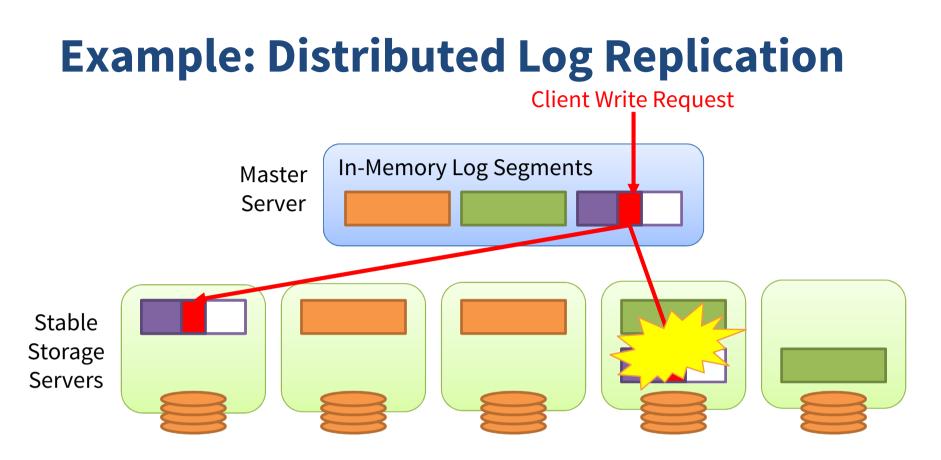
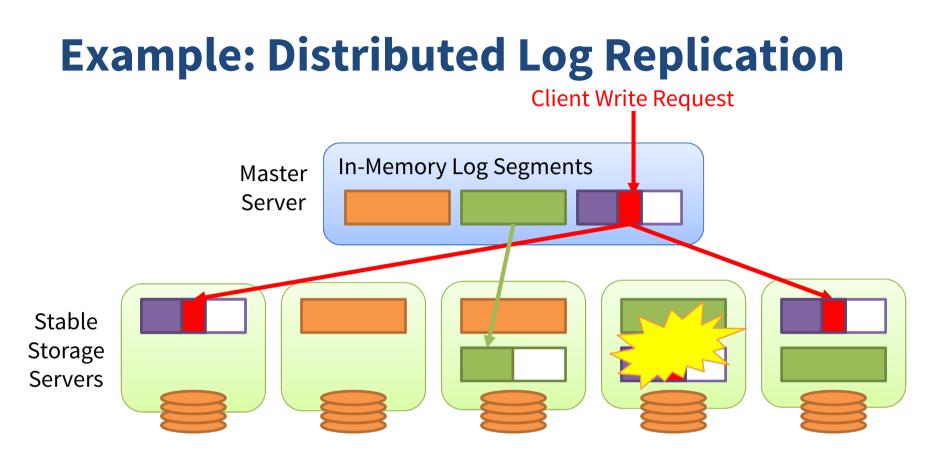
Toward Common Patterns for Distributed, Concurrent, Fault-Tolerant Code

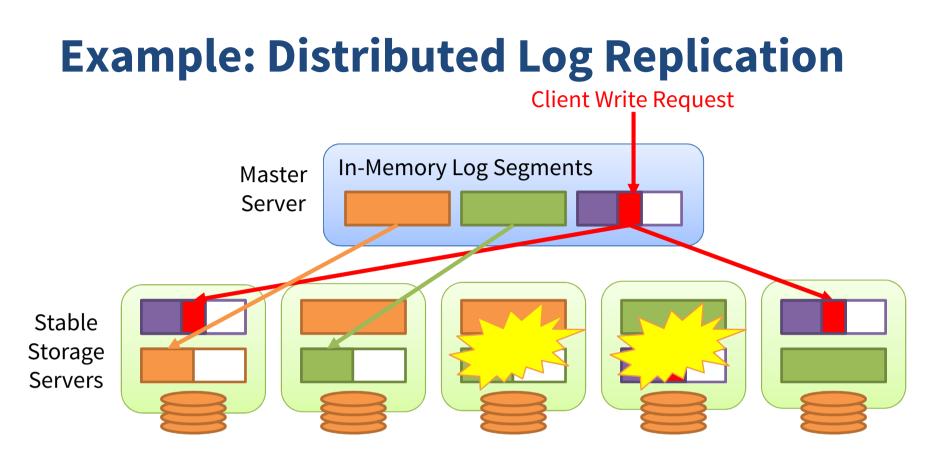
Ryan Stutsman and John Ousterhout Stanford University

Introduction

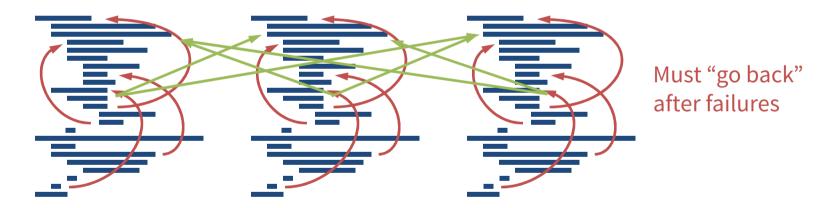

- More developers writing more code that is distributed, concurrent, fault-tolerant (DCFT)
 - Hard to get right
 - 1000s of logical threads of execution
 - Failures require highly adaptive control flow
 - No commonly accepted patterns
- Threads versus events but then what?
- A pattern from our experiences: "rules"
 - Small steps whose execution order is based on state
 - Potential for correct code more quickly
- Fumbling in the dark; interested in others' ideas

DCFT Code Examples

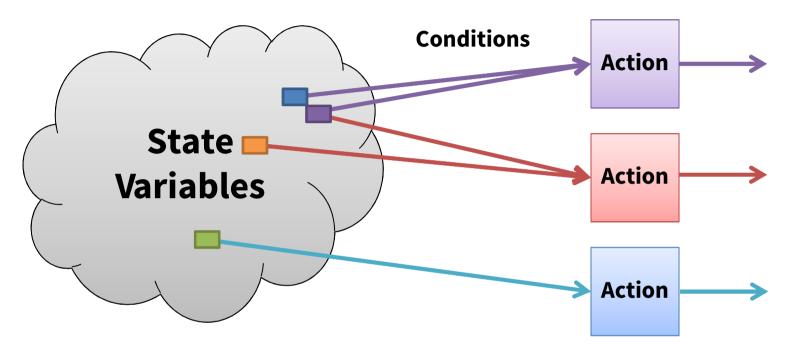

- HDFS chunk replication
- Coordinating Hadoop jobs
- RAMCloud
 - Replicate 1000s of chunks across 1000s of servers
 - Coordinate 1000s servers working to recover failed server
 - Coordinate many ongoing recoveries at the same time


• Segmented log replicates client data

- Segmented log replicates client data
- Failures require recreation of lost segments


- Segmented log replicates client data
- Failures require recreation of lost segments

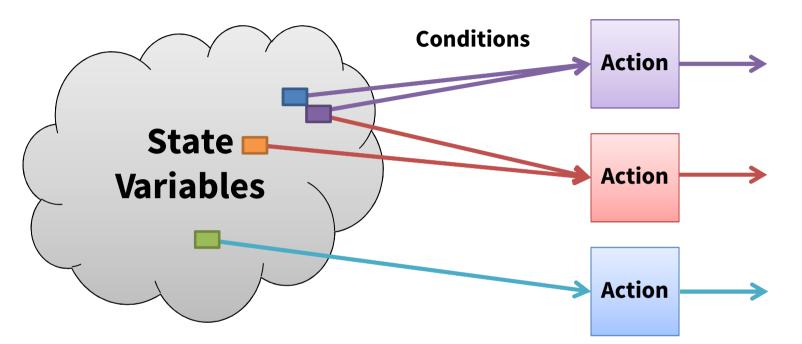
- Segmented log replicates client data
- Failures require recreation of lost segments
- Failures can occur at any time


This Type of Code is Hard

- Traditional imperative programming doesn't work
- Result: spaghetti code, brittle, buggy

• PC doesn't matter, only state matters

Our Approach: Rules



Rule: Condition + Action

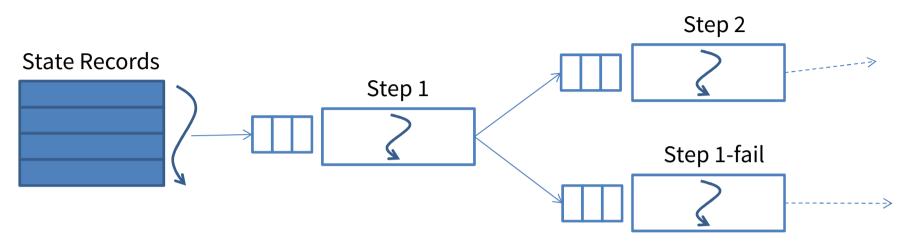
If unreplicated data and no RPC outstanding and prior segment footer is replicated

Then start write RPC containing unreplicated data

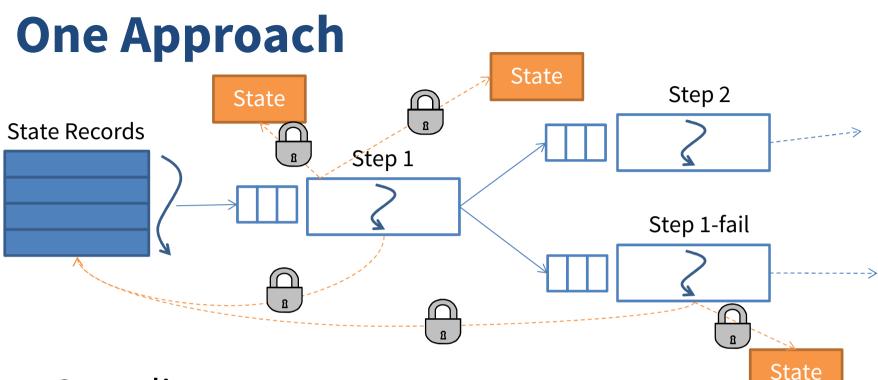
Our Approach: Rules

- Execution order determined by state
- Actions are short, non-blocking, atomic
- Failures handled between actions not within

Segment Replication Rules


#	Condition	Action
1	No backup server selected	Choose available server to hold replica
2	Header unreplicated, no RPC outstanding	Start RPC containing the header
3	Header unreplicated, RPC completed	Mark header replicated; mark prior segment to allow footer replication
4	Unreplicated data, no RPC outstanding, prior footer is replicated	Start write RPC containing up to 1 MB of unreplicated data
5	Unreplicated data, RPC completed	Mark sent data as replicated
6	Segment finalized, following header replicated, footer not sent, no RPC outstanding	Start RPC containing the footer
7	Segment finalized, RPC completed	Mark footer replicated; mark following segment to allow data replication

On failure reset sent/replicated bytes and RPCs


Structuring rules

- How should hundreds of rules be organized?
 - Need modularity and clear visualization
- How can rules be evaluated efficiently?
 - Polling to test conditions for all rules won't scale

One Approach

- Used by HDFS chunk replication
- Structures paired with a thread that polls to find needed work due to failure
- State records queued between threads/actions
- No modularity; code scattered across threads

- Complicates concurrency
- CPU parallelism unneeded
- Need fine-grained locking on structures
- But must carefully perforated for liveness/responsiveness

Tasks

- Task: Rules, state, and a goal
 - Similar to how monitors group locks with state
 - Implemented as a C++ object
 - State: fields of the object
 - Rules: applied via virtual method on the object
 - Goal: invariant the task is intended to attain/retain
- Log segment replication
 - One task per segment
 - Rules send/reap RPCs, reset state on failures
 - Goal is met when 3 complete replicas are made

Pools

- **Pool:** Applies rules to tasks with unmet goals
- A pool for each independent set of tasks
- Serializes execution of rules in each pool
- Simplifies synchronization

Benefits of Rules, Tasks, and Pools

- Directly determines code structure
- Eases local reasoning
 - Write a rule at a time
 - Condition clearly documents expected state
 - Actions are short with simple control flow
- Rules are amenable to model checking
 - But less restrictive than modeling languages
 - Flexible, easy to abuse with gross performance hacks and odd concurrency needs
- Question: fundamental or just a mismatch of kernel scheduling/concurrency abstractions to app?

Conclusion

- Code pattern from our experiences: "rules"
 - Small steps whose order is based on state
 - Easy to adapt on failures
- PC doesn't matter, only state matters
- In DCFT code non-linear flow is unavoidable
- Interesting question, how to structure rules
- This is one way, we'd love to hear others

Isn't this just state machines?

- Explicit states explode or hide detail
 - Similar to code flowcharts of the 70s
 - Mental model doesn't scale well to complex code
- Collate on state rather than on events+state
 - Convert all events to state
 - Reason about next step based on state alone
- Conditions (implicit states) serve as documentation
 - Provide strong hint about what steps are needed

Isn't this just events?

- Rules take actions in based on state
 - Rather than events+state
- Event-based code: handler triggers all needed actions
- Rules-based code: events just modify state
 - Decouples events from rules that react to them
 - Event handler unaware of needed reactive steps
 - Add reactions without modifying event handler
 - Improves modularity

Don't user-level threads solve this?

- They help
 - Support 1000s of lightweight contexts
 - Limit interruption to well-defined points (cooperatively scheduled)
- Stack-trace is still of limited benefit, though
 - Threads must recheck for failures after resuming
 - Code devolves into small, non-blocking, atomic actions just as with rules

Isn't this hard to debug?

- Loss of stack context makes debugging hard
- Yes, but it would be lost even with threads
- Fundamental limitation of the need to break code into reactive, reorderable blocks
- Best we've got so far
 - Dump state variables when a goal goes unmet for a long period
 - Log aggressively for debugging
- Can add causality tracking to log messages