
Durability and Crash Recovery for

Distributed In-Memory Storage

Ryan Stutsman
Stanford University

Introduction

• RAMCloud: large-scale datacenter storage in DRAM

• Scale: up to 10,000 servers, 1+ PB capacity

• Low latency: 5 µs remote access, 1M ops/s/server

• 1000× faster than disk-based storage systems

• Impact: more data-intensive applications

• Key problem: durability and availability

• Cost of DRAM rules out traditional replicated approaches

• My work: DRAM as reliable as replicated disk

storage without performance or cost penalties

2

Contributions

DRAM as reliable as replicated disk storage without

performance or cost penalties

Scalable Crash Recovery

• Availability through fast recovery rather than redundancy

• Leverages scale to restore an entire server’s DRAM in 1 to 2 s

Fault-tolerant Decentralized Log Structure

• Provides fast writes by eliminating disk accesses

• Retains consistency and restores durability after failures

• Scales by avoiding centralization

3

Outline

• Introduction

• Contributions

• RAMCloud Overview

• Fast Crash Recovery

• Evaluation

• Distributed Fault-Tolerant Log

• Surviving Massive Failures

• Conclusion

4

…

App

Library

App

Library

App

Library

App

Library
…

Datacenter

Network
Coordinator

Up to 10,000

Commodity Storage Servers

5

RAMCloud Architecture

Up to 100,000 Application Servers

Uses DRAM as

Key-Value Store
64 to 256 GB

Stores data from

other Masters

High-speed network
~5 µs round-trip

Master

Backup

Master

Backup

Master

Backup

Master

Backup

Outline

• Introduction

• Contributions

• RAMCloud Overview

• Fast Crash Recovery

• Evaluation

• Distributed Fault-Tolerant Log

• Surviving Massive Failures

• Conclusion

6

Availability Challenges

• Server failures frequent

• DRAM is volatile and expensive

Goals

• As durable as disk-based storage systems

• Minimize impact on performance

• Minimum cost, energy

7

Strawman: Replicate in DRAM?

• 3× system cost, energy

• Still have to handle power failures

• Standard datacenter battery backups limited to 45 s

8

write
Master

Master

Master

• 1 copy in DRAM

• Backup on disk/flash: cheap compared to DRAM

• Problem: synchronous disk writes too slow
• Fault-tolerant decentralized log structure

• Problem: data is unavailable on crash
• Fast crash recovery in 1 to 2 s

• Fast enough that applications won’t notice

9

RAMCloud’s Approach

• No disk I/O during write requests

• Efficient 8 MB bulk writes

• Limits buffered data; flush on power loss in < 250 ms

Fast Writes: Buffered Logging

Master

In-Memory Log Segments

Hash

Table

write(“first-name”, “ryan”)

10

Disk

Backup

Buffered Segment

Disk

Backup

Buffered Segment

Disk

Backup

Buffered Segment

Restoring Availability: Crash Recovery

• What is left when a master crashes?

• Log data stored on disk on backups

• What must be done to restart servicing requests?

• Replay log data into DRAM

• Reconstruct the hashtable

11

• Goal: recover 64 GB in 1-2 seconds

• Can’t do it with simple replication

• Key to fast recovery:

use system scale

12

Recovery Bottlenecks

Recovery

Master

Backups

Crashed

Master

Disks: ~100 MB/s each

64 GB / 300 MB/s ≈ 210 seconds

NIC: ~1 GB/s
64 GB / 1 GB/s ≈ 60 seconds

• Each log divided into 8MB segments

• Master chooses different backups for each segment

• Segments scattered randomly across all servers

• During recovery:
• All backups read from disk in parallel
• 64 GB / (1000 backups * 100 MB/s/backup) = 0.6 seconds

13

Scatter Segments

Backups

In-Memory Log Segments
Master

• Divide each master’s data into partitions

• Each partition groups a fraction of crashed key space

• 64 GB / (100 masters * 1 GB/s/master) = 0.6 seconds

• Recover each partition on separate Recovery Master

14

Partitioned Recovery

Recovery

Masters

Backups

Crashed

Master

Parallelism in Recovery
1. Read disk

2. Bucket objects

by partition

Log

Hash

Table

3. Transfer

filtered data

to recovery

master

4. Add objects to

hash table & log

5. Send log data

to backups

Recovery MasterBackup
6. Write backup

data to disk

15

Recovery is both data parallel and tightly pipelined

Issues

• Eliminating stragglers

• Randomized segment scattering

• Balancing partitions

• Finding log segments

• Verifying log integrity

• Maximizing concurrency

• Out-of-order log replay

• Fast failure detection

• Failures during recovery

• Consistency/Zombie masters

16

Randomized Segment Scattering

• Randomizing replica locations has many benefits

• Avoids centralized allocation: 100k+ segments/second

• Avoids hotspots; spreads request load

• Balances total replicas on each disk

• Spreads replicas from each master across all disks

17

Uniform Randomization Doesn’t Work

• Problem: balancing time reading across disks

• Recovery time determined by the slowest disk

• Random distribution has large variance

• Frequently 2 to 3× more replicas on one backup than avg

18

Master

Backups

Balancing Disk Read Times

• Solution: add small amount of choice

• Analyzed in [Mitzenmacher 1996]

• Choose candidate backups randomly

• Select candidate that minimizes expected disk read time

• Must take into account disk performance; fan vibration

19

Master

Backups

Issues

• Eliminating stragglers

• Randomized segment scattering

• Balancing partitions

• Finding log segments

• Verifying log integrity

• Maximizing concurrency

• Out-of-order log replay

• Fast failure detection

• Failures during recovery

• Consistency/Zombie masters

20

Finding Log Segment Replicas

• Problem: centralized segment catalog prohibitive

• No centralized map of replica locations

• No centralized list of which segments comprise a log

• Solution: ask all backups with broadcast

• On master crash coordinator contacts each backup

• Have to contact all backups anyway: scattered segments

• Collects a list of all available replicas

21

• Problem: ensure complete log found on recovery

• What if all replicas for some segment are missing?

• Solution: make log self-describing

• Add a “log digest” to each replica when it is allocated

• Lists all segments of the log

• Reduces problem to finding up-to-date log digest

Detecting Incomplete Logs

22

S7 S19 S20

[S7, S19, S20]

Digest

Choosing an Up-to-date Digest

• Solution: mark the most recent log digest

• Whenever a new digest is created it is marked

• Clear mark when last modification is made to segment

• Challenge: ensure safe transition between digests

• Mark new digest before clearing mark on the old one

• Two may be marked; only add data after just one marked

23

Segment 19 Segment 20

[7, 19]OK

OK[7, 19] [7, 19, 20]Stale

Digest Digest

OK[7, 19, 20][7, 19]OK

T
im

e

Issues

• Eliminating stragglers

• Randomized segment scattering

• Balancing partitions

• Finding log segments

• Verifying log integrity

• Maximizing concurrency

• Out-of-order log replay

• Fast failure detection

• Failures during recovery

• Consistency/Zombie masters

24

Outline

• Introduction

• Contributions

• RAMCloud Overview

• Fast Crash Recovery

• Evaluation

• Distributed Fault-Tolerant Log

• Surviving Massive Failures

• Conclusion

25

Experimental Setup

Cluster Configuration

60 Machines

2 Disks per Machine (100 MB/s/disk)

Mellanox Infiniband HCAs (25 Gbps, PCI Express limited)

5 Mellanox Infiniband Switches

Two layer topology

Nearly full bisection bandwidth

26

• Approximation for datacenter networks in 3-5 years

• 5.2 µs round trip from 100 B read operations

How well does recovery scale?

27

6 Backups

Crashed

Master

600 MB

Recovery

Master

600 MB

How well does recovery scale?

28

12 Backups

Crashed

Master

1200 MB

2 Recovery

Masters

600 MB600 MB

How well does recovery scale?

29

120 Backups

600 MB
600 MB

600 MB
600 MB

600 MB
600 MB

600 MB
600 MB

600 MB
600 MB

600 MB
600 MB

600 MB
600 MB

600 MB
600 MB

600 MB
600 MB

600 MB
600 MB

20 Recovery

Masters

Crashed

Master

11.7 GB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 3,000 6,000 9,000 12,000

R
e

co
v

e
ry

 T
im

e
 (

se
co

n
d

s)

DRAM Recovered (MB)

Total Recovery Time

Min Disk Reading Time

Max Disk Reading Time

30

How well does recovery scale?

1 Recovery Master

6 disks: 600 MB/s

Recovered: 600 MB

20 Recovery Masters

120 backups: 11.7 GB/s

Recovered: 11.7 GB

Recovery well pipelined; all disks active > 75% of the time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 6,000 12,000 18,000 24,000 30,000 36,000

R
e

co
v

e
ry

 T
im

e
 (

se
co

n
d

s)

DRAM Recovered (MB)

Total Recovery Time

31

Flash Allows Higher Scalability

60 Recovery Masters

120 SSDs: 31 GB/s

Recovered: 35 GB

2x270 MB/s SSDs per recovery master

(vs. 6x100 MB/s disks per recovery master)

Outline

• Introduction

• Contributions

• RAMCloud Overview

• Fast Crash Recovery

• Evaluation

• Fault-Tolerant Decentralized Log

• Surviving Massive Failures

• Conclusion

32

Fault-tolerant Decentralized Log

• Fast and cheap durability in normal case

• Eliminates synchronous disk writes

• High read bandwidth for fast crash recovery

• Scalable; avoids centralization

• Even on segment transitions

• But, how do failures impact logs?

33

Multiple/Massive Recovery

Fault-tolerant Decentralized Log

Low-Latency Read/Write

Operations
Fast Crash Recovery

Distributed Replica Recreation

• Problem: failures accumulate into loss of segments

• Solution: recreate replicas to restore redundancy

• Simple: master uses same approach as normal operation

• Efficient: use master’s in-memory copy

• Concurrent: work is divided up among all the hosts

• Faster than master recovery, but lower priority

34

Masters

Backups

Restarting After Widespread Failure

• Problem: widespread correlated failures may lose

all replicas of some segments

• Power outages, loss of core switch, coordinated segfaults

• Rare events, a few times a year; usually temporary

• Unavailability ok until problem subsides

• Solution: wait for servers to rejoin with replicas

• Perform recovery when all segments available for server

35

Inconsistent Replicas

• Problem: some found replicas may be inconsistent

• Master can’t wait for backup to rejoin to add data to log

• Master can’t clear log digest mark on lost head replicas

• Cannot solve with log alone and remain available

• (Sketch of) Solution: must centralize some state

• Prevent inconsistency of most replicas: atomic recreation

• Minimize centralized state for inconsistent head replicas

• Update log head version on coordinator on inconsistency

• Rare, expect 6 updates/hr, constant 16 bytes of state/log

36

S7 S19
S20

S20

S21

Outline

• Introduction

• Contributions

• RAMCloud Overview

• Fast Crash Recovery

• Evaluation

• Fault-Tolerant Decentralized Log

• Surviving Massive Failures

• Conclusion

37

Coordinating Restart/Massive Recovery

• Simplicity is goal on loss of many/all servers

• Massive failures are expected to be rare

• Reuse master recovery

• Treat massive failure as a series of single failures

• Recoveries fail until a complete log is available

• Retry recoveries round-robin

38

Outline

• Introduction

• Contributions

• RAMCloud Overview

• Fast Crash Recovery

• Evaluation

• Fault-Tolerant Decentralized Log

• Surviving Massive Failures

• Conclusion

39

Key Design Principles

• Make scale your friend
• Failures are frequent at scale

• But, scale provides resources for solving problems; crash recovery

• Cannot design for the “common” case
• “Rare” corner cases happen frequently

• Code must always be ready to adapt to failures

• Pervasive randomization
• Decentralized decision-making, avoids pathologies; use carefully

• Collapse error handling
• Fast recovery simplifies the system

• When in doubt, crash

• DRAM corruption and more

40

Related Work

Large-scale DRAM storage

• Large-scale memcached [NSDI 13]

• Apps must deal with backing store and consistency

• Reduced performance from misses, cold caches

Fast recovery for availability

• Fast Crash Recovery in Distributed File Systems

[Baker 94]

• Reconstruct server’s view of client cache state

• Restart quickly enough for continuous availability

41

Related Work

Fast updates by buffering in non-volatile memory

• POSTGRES [VLDB 87]

Log-structured storage

• Log-structured Filesystem (LFS) [SOSP 91]
• Filesystem interface on a single disk

• RAMCloud keeps log in-memory and on disk

• GFS [SOSP 03]
• Fault-tolerant log via replicated chunks throughout cluster

• Buffers writes in buffer cache

• Centralized metadata server to allocate chunks

• Supports Bigtable [OSDI 06], primarily disk-based DB

42

Conclusions

• RAMCloud: large-scale datacenter storage in DRAM

• Scale: Up to 10,000 servers, 1+ PB capacity

• Low latency: 5 µs remote access, 1M ops/s/server

• 1000× faster than disk-based storage systems

• Impact: more data-intensive applications

• Durability: fault-tolerant decentralized log

• Availability: scalable fast crash recovery

• Result: DRAM as reliable as replicated disk

storage without performance or cost penalties

43

Contributions

DRAM as reliable as replicated disk storage without

performance or cost penalties

Scalable Crash Recovery

• Availability through fast recovery rather than redundancy

• Leverages scale to restore an entire server’s DRAM in 1 to 2 s

Fault-tolerant Decentralized Log Structure

• Provides fast writes by eliminating disk accesses

• Retains consistency and restores durability after failures

• Scales by avoiding centralization

44

Thanks

• Christine, Mendel, Christos

• Mikhail Atallah, David, John

• Nickolai, Daniel, Jad, Mike Walfish

• Steve, Diego, Ankita, Satoshi

• Mom, Dad

45

Contributions

DRAM as reliable as replicated disk storage without

performance or cost penalties

Scalable Crash Recovery

• Availability through fast recovery rather than redundancy

• Leverages scale to restore an entire server’s DRAM in 1 to 2 s

Fault-tolerant Decentralized Log Structure

• Provides fast writes by eliminating disk accesses

• Retains consistency and restores durability after failures

• Scales by avoiding centralization

49

50

