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Introduction

• RAMCloud: large-scale datacenter storage in DRAM

• Scale: up to 10,000 servers, 1+ PB capacity

• Low latency: 5 µs remote access, 1M ops/s/server

• 1000× faster than disk-based storage systems

• Impact: more data-intensive applications

• Key problem: durability and availability

• Cost of DRAM rules out traditional replicated approaches

• My work: DRAM as reliable as replicated disk 

storage without performance or cost penalties
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Contributions

DRAM as reliable as replicated disk storage without 

performance or cost penalties

Scalable Crash Recovery

• Availability through fast recovery rather than redundancy

• Leverages scale to restore an entire server’s DRAM in 1 to 2 s

Fault-tolerant Decentralized Log Structure

• Provides fast writes by eliminating disk accesses

• Retains consistency and restores durability after failures

• Scales by avoiding centralization
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RAMCloud Architecture
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Availability Challenges

• Server failures frequent

• DRAM is volatile and expensive

Goals

• As durable as disk-based storage systems

• Minimize impact on performance

• Minimum cost, energy
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Strawman: Replicate in DRAM?

• 3× system cost, energy

• Still have to handle power failures

• Standard datacenter battery backups limited to 45 s
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• 1 copy in DRAM

• Backup on disk/flash: cheap compared to DRAM

• Problem: synchronous disk writes too slow
• Fault-tolerant decentralized log structure

• Problem: data is unavailable on crash
• Fast crash recovery in 1 to 2 s

• Fast enough that applications won’t notice
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RAMCloud’s Approach



• No disk I/O during write requests

• Efficient 8 MB bulk writes

• Limits buffered data; flush on power loss in < 250 ms

Fast Writes: Buffered Logging

Master

In-Memory Log Segments

Hash

Table

write(“first-name”, “ryan”)
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Restoring Availability: Crash Recovery

• What is left when a master crashes?

• Log data stored on disk on backups

• What must be done to restart servicing requests?

• Replay log data into DRAM

• Reconstruct the hashtable
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• Goal:  recover 64 GB in 1-2 seconds

• Can’t do it with simple replication

• Key to fast recovery:

use system scale
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Recovery Bottlenecks

Recovery

Master

Backups

Crashed

Master

Disks: ~100 MB/s each

64 GB / 300 MB/s ≈ 210 seconds

NIC: ~1 GB/s
64 GB / 1 GB/s ≈ 60 seconds



• Each log divided into 8MB segments

• Master chooses different backups for each segment

• Segments scattered randomly across all servers

• During recovery:
• All backups read from disk in parallel
• 64 GB / (1000 backups * 100 MB/s/backup) = 0.6 seconds
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• Divide each master’s data into partitions

• Each partition groups a fraction of crashed key space

• 64 GB / (100 masters * 1 GB/s/master) = 0.6 seconds

• Recover each partition on separate Recovery Master
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Parallelism in Recovery
1. Read disk

2. Bucket objects

by partition

Log

Hash

Table

3. Transfer 

filtered data 

to recovery 

master

4. Add objects to

hash table & log

5. Send log data 

to backups

Recovery MasterBackup
6. Write backup

data to disk

15

Recovery is both data parallel and tightly pipelined



Issues

• Eliminating stragglers

• Randomized segment scattering

• Balancing partitions

• Finding log segments

• Verifying log integrity

• Maximizing concurrency

• Out-of-order log replay

• Fast failure detection

• Failures during recovery

• Consistency/Zombie masters
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Randomized Segment Scattering

• Randomizing replica locations has many benefits

• Avoids centralized allocation:  100k+ segments/second

• Avoids hotspots; spreads request load

• Balances total replicas on each disk

• Spreads replicas from each master across all disks
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Uniform Randomization Doesn’t Work

• Problem: balancing time reading across disks

• Recovery time determined by the slowest disk

• Random distribution has large variance

• Frequently 2 to 3× more replicas on one backup than avg
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Balancing Disk Read Times

• Solution: add small amount of choice

• Analyzed in [Mitzenmacher 1996]

• Choose candidate backups randomly

• Select candidate that minimizes expected disk read time

• Must take into account disk performance; fan vibration
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Finding Log Segment Replicas

• Problem: centralized segment catalog prohibitive

• No centralized map of replica locations

• No centralized list of which segments comprise a log

• Solution: ask all backups with broadcast

• On master crash coordinator contacts each backup

• Have to contact all backups anyway: scattered segments

• Collects a list of all available replicas
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• Problem: ensure complete log found on recovery

• What if all replicas for some segment are missing?

• Solution: make log self-describing

• Add a “log digest” to each replica when it is allocated

• Lists all segments of the log

• Reduces problem to finding up-to-date log digest

Detecting Incomplete Logs
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Choosing an Up-to-date Digest

• Solution: mark the most recent log digest

• Whenever a new digest is created it is marked

• Clear mark when last modification is made to segment

• Challenge: ensure safe transition between digests

• Mark new digest before clearing mark on the old one

• Two may be marked; only add data after just one marked
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Experimental Setup

Cluster Configuration

60 Machines

2 Disks per Machine (100 MB/s/disk)

Mellanox Infiniband HCAs (25 Gbps, PCI Express limited)

5 Mellanox Infiniband Switches

Two layer topology

Nearly full bisection bandwidth
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• Approximation for datacenter networks in 3-5 years

• 5.2 µs round trip from 100 B read operations



How well does recovery scale?
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How well does recovery scale?
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How well does recovery scale?
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How well does recovery scale?

1 Recovery Master

6 disks: 600 MB/s

Recovered: 600 MB

20 Recovery Masters

120 backups: 11.7 GB/s

Recovered: 11.7 GB

Recovery well pipelined; all disks active > 75% of the time
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Flash Allows Higher Scalability

60 Recovery Masters

120 SSDs: 31 GB/s

Recovered: 35 GB

2x270 MB/s SSDs per recovery master

(vs. 6x100 MB/s disks per recovery master)
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Fault-tolerant Decentralized Log

• Fast and cheap durability in normal case

• Eliminates synchronous disk writes

• High read bandwidth for fast crash recovery

• Scalable; avoids centralization

• Even on segment transitions

• But, how do failures impact logs?
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Distributed Replica Recreation

• Problem: failures accumulate into loss of segments

• Solution: recreate replicas to restore redundancy

• Simple: master uses same approach as normal operation

• Efficient: use master’s in-memory copy

• Concurrent: work is divided up among all the hosts

• Faster than master recovery, but lower priority
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Restarting After Widespread Failure

• Problem: widespread correlated failures may lose 

all replicas of some segments

• Power outages, loss of core switch, coordinated segfaults

• Rare events, a few times a year; usually temporary

• Unavailability ok until problem subsides

• Solution: wait for servers to rejoin with replicas

• Perform recovery when all segments available for server
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Inconsistent Replicas

• Problem: some found replicas may be inconsistent

• Master can’t wait for backup to rejoin to add data to log

• Master can’t clear log digest mark on lost head replicas

• Cannot solve with log alone and remain available

• (Sketch of) Solution: must centralize some state

• Prevent inconsistency of most replicas: atomic recreation

• Minimize centralized state for inconsistent head replicas

• Update log head version on coordinator on inconsistency

• Rare, expect 6 updates/hr, constant 16 bytes of state/log
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Coordinating Restart/Massive Recovery

• Simplicity is goal on loss of many/all servers

• Massive failures are expected to be rare

• Reuse master recovery

• Treat massive failure as a series of single failures

• Recoveries fail until a complete log is available

• Retry recoveries round-robin
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Key Design Principles

• Make scale your friend
• Failures are frequent at scale

• But, scale provides resources for solving problems; crash recovery

• Cannot design for the “common” case
• “Rare” corner cases happen frequently

• Code must always be ready to adapt to failures

• Pervasive randomization
• Decentralized decision-making, avoids pathologies; use carefully

• Collapse error handling
• Fast recovery simplifies the system

• When in doubt, crash

• DRAM corruption and more
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Related Work

Large-scale DRAM storage

• Large-scale memcached [NSDI 13]

• Apps must deal with backing store and consistency

• Reduced performance from misses, cold caches

Fast recovery for availability

• Fast Crash Recovery in Distributed File Systems 

[Baker 94]

• Reconstruct server’s view of client cache state

• Restart quickly enough for continuous availability
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Related Work

Fast updates by buffering in non-volatile memory

• POSTGRES [VLDB 87]

Log-structured storage

• Log-structured Filesystem (LFS) [SOSP 91]
• Filesystem interface on a single disk

• RAMCloud keeps log in-memory and on disk

• GFS [SOSP 03]
• Fault-tolerant log via replicated chunks throughout cluster

• Buffers writes in buffer cache

• Centralized metadata server to allocate chunks

• Supports Bigtable [OSDI 06], primarily disk-based DB
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Conclusions

• RAMCloud: large-scale datacenter storage in DRAM

• Scale: Up to 10,000 servers, 1+ PB capacity

• Low latency: 5 µs remote access, 1M ops/s/server

• 1000× faster than disk-based storage systems

• Impact: more data-intensive applications

• Durability: fault-tolerant decentralized log

• Availability: scalable fast crash recovery

• Result: DRAM as reliable as replicated disk 

storage without performance or cost penalties
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